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Abstract

A list of publications of the research performed during the period 7/1/84

- 7/30/89 of theGrant AFOSR-84-0233 is provided. Theoretical research has

been conducted on (a) Termolecular Association and Recombination (b) electron-

(excited) atom collisions and on (c) analytical solutions of the Time Depend-

ent Debye-Smoluchowski equation for transport influenced reactions. Papers on

all of the above topics have been written up and published as papers, with

reprints sent to AFOSR at various times during the period. The Exact Master

Equation Method, a Variational Principle discovered during the course of this

research, and various approximate treatments are presented as Special

Highlights of this research. In addition, the Appendices include a major

review of Recombination Processes in General.
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1. Acoomplshments due to AFOSR Support

PRINCIPAL INVESTIGATOR: M. R. Flannery

School of Physics, Georgia Institute of Technology

Grant AFOSR-84-0233, Period 7/1/84 - 7/30/89

Program Element No. 61102F, Project No. 2301, Task No. A4

1.1 Research Objectives

There are two main objectives to this research program:

(1) Basic formulation and development of the theory of termolecular

association processes

A+ +B_ + M + AB + M (1)

and

A+ + B + M - AB+ + M (2)

(2) Development of scattering theories for the electron-(excited) atom

collision process

e+A e+A (3)

It is important to conduct an exhaustive theoretical investigation of (1)

since not only is (1) of great significance in its ok, . ight to many important
0 U

applications (e.g., exciplex lasers, KrF , XeCl etc.) ..c also it represents

the simplest three-body chemical reaction. It can therefore be considered as

serving as a prototype of three body processes in general.

During this grant period, this objective has been achieved for gases M at

low densities. In addition to the Exact Master Equation Treatment of (1), a

new Variational Principle has been discovered. This Variational Principle is

applicable not only to ion-ion recombination (1) but to three-body processes

2



in general. It represents the first rigorous Variational Principle in

Chemical Physics Collision Processes and is fully documented in §3.2.

Also various simpler but approximate treatments of (1) have been

investigated - the Diffusion, Bottleneck, Strong Collision and Coupled

Nearest-Neighbor Methods. These are discussed fully in §3.

The second main objective is the development of scattering theories for

process (3). Now that some experimental activity is beginning to emerge it is

important to develop theories for electron-(excited) atom collisions. This

objective has been achieved and progress is detailed in Appendix B.

t
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1.2 Full List or Refereed Publications in Scientific Journals (1984-1989)

1. "Ion-Ion Recambination at High Ion-Density", M. R. Flannery, J. Phys. B:
Atom. Molec. Phys. 18, 5 (1985).

2. "Selected Bibliography on Atomic Collisions', M. R. Flannery, E. W.
McDaniel and S. T. Manson, Atomic Data and Nuclear Data Tables j3,
1-148 (1985).

3. "The Rate for Transport-Influenced Reactions", M. R. Flannery, J. Phys. B:
Atom. Molec. Phys. 18, L747-L749 (1985).

4. "Basic Expression for Termolecular Recombination and Dissociation", 14. R.
Flannery, J. Phys. B: Atom. Molec. Phys. 18, L839-L844 (1985).

5. "Connection Between Microscopic and Thomson Theories of Recombination",
H. R. Flannery, J. Phys. B: Atom. Holec. Phys. 19, L227-L233 (1986).

6. "Orientation and Alignment Parameters for e-He(1 1S -+ 3 1D) Collisions",
M. R. Flannery and E. J. Mansky, J. Phys. B: Atom. Molec. Phys. 20,
L235-L239 (1987).

7. "Macroscopic and Microscopic Perspectives of Termolecular Association of
Atomic Reactants in a Gas", M. R. Flannery, in Recent Studies in Atomic
and Molecular Processes, ed. A. E. Kingston (Plenum Press, London, 1987),
pages 167-191.

8. "Representations of the Transport Equation for Reactive Processes", 14. R.
Flannery, J. Phys. B: Atom. Molec. Phys. 20, 4929-4938 (1987).

9. "Diffusional Theory of Termolecular Recombination and Association of
Atomic Species in A Gas", 4. R. Flannery, J. Chem. Phys. 87, 6947-6956
(1987).

10. "Termolecular Recombination at Low Gas Density: Strong-Collision Bottle-
neck and Exact Treatments", 14. R. Flannery and E. J. Mansky, J. Chem.
Phys. 88, 4228-4241 (1988).

11. "Variational Principle for Termolecular Recombination in a Gas", 14. R.
Flannery, J. Chem. Phys. 89, 214-222 (1988).

12. "Termolecular Recombination: Nearest-Neighbor Limit and Uncoupled-
Intermediate-Levels Limit", 4. R. Flannery and E. J. Mansky, J. Chem.
Phys. §2, 4086-4091 (1988).

13. "Analytical and Numerical Solutions of the Time-Dependent Debye-
Smoluchowski Equation for Transport-Influenced Reactions", 1. R.
Flannery and E. J. Mansky, Chem. Phys. 132, 115-136 (1989).

14. "Recombination Processes", M. R. Flannery in Molecular Processes in
Space: 'Physics of Atoms and Molecules' Series, edited by T. Watanabe,
I. Shimamura, 1. Shimizu and Y. Itikawa (Plenum Press, London, 1990).

Six reprints of each of the above publications were submitted to AFOSR as
reprint reports with numbers GIT-85-002, 003, 006, 007, 004, 010, 012, 011,
015, 016 017 and 018, respectively.
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1.3 Chapters in Books

1. "Macroscopic and Microscopic Perspectives of Termolecular Association of
Atomic Reactants in a Gas", in Recent Studies in Atomic and Molecular
Processes, ed. A. E. Kingston (Plenum Press, London, 1987) pages 160-191.

2. "Recombination Processes", in Molecular Processes in Space: 'Physics of
Atoms and Molecules' Series, edited by T. Watanabe, I. Shinmanra, M.
Shirmizu and Y. Itikaa (Plenum Press, London, 1990).

3. "The Numerical Solution of Partial Differential Equations in Atomic
Scattering Theory", by E. J. Mansky in Proceedings of the Summer School
of Computational Atomic and Nuclear Physics, edited by C. Bottcher, M. R.
Strayer and J. B. McGrory (World Scientific, 1990).

4. "Iterative Solution of Large Linear Systems and Heavy Particle Collisions:
Ion-Ion Recombination", by E. J. Mansky in Proceedings of the Simmer
School of Computational Atomic and Nuclear Physics, edited by C. Bottcher,
M. R. Strayer and J. B. McGrory (World Scientific, 1990).

5. "Electron Collision Cross Sections Involving Excited States", by E. J.
Mansky, in Proceedings of the NATO-Advanced Study Institute on "Non-
Equilibrium Processes in Partially Ionized Gases", edited by M. Capitelli
and J. N. Bardsley (Plenum Press, 1990).

Chapter 1 has been published. Six reprints have already been sent to

AFOSR under Reprint Report GIT-85-012.

Chapters 12, 3, 4, 5 are in press. Reprints will be sent when available.

These chapters are included as Appendices A, B, C and D of this report.
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1.4 Annual Reports (7/1/84 - 7/30/88)

Full AnnualReports of the research performed during the previous twelve

month period were prepared and submitted to AFOSR. The Performing

Organization Report Numbers for the periods 7/1/84-6/30/85; 7/1/85-6/30/86;

7/1/86-6/30/87 and 7/1/87-7/30/88 were GIT-85-001, GIT-85-008, GIT-85-009 and

GIT-85-014, respectively.

1.5 Funding History

Project AFOSR-84-0233:

7/1/84 - 6/30/85: 73,403

7/1/85 - 6/30/86: 70,188

7/1/86 - 6/30/87: 86,730

7/1/87 - 7/30/88: 92,845

8/1/88 - 7/30/89: 99,311

TOTAL: $422,311

1.6 Personnel

1. Professor M. R. Flannery - Principal Investigator

2. Dr. E. J. Mansky - Research Scientist II

3. Mr. M. S. Keehan- Graduate Student

4. Mr. P. Smith - Graduate Student

5. Mr. A. Haffad - Graduate Student

6. Mr. A. Hekki - Graduate Student
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2. Invited and Contributed Papers Presented at Professional Scientific

Conferences (1984-1988)

1984: The following papers were presented at the 37th Annual Gaseous

Electronics Conference, October 9-12, 1984 held at the University of

Colorado. Abstracts were published in Bull. Amer. Phys. Soc. (1985)

and in Annual Report GIT-85-001.

1. "Association/Dissociation in Dense Gases and Adsorption/Desorption on

Surfaces", by M. R. Flannery.

2. "Analytical and Numerical Solutions of the Time Dependent Debye-

Smoluchowski Equation", by M. R. Flannery and E. J. Mansky.

3. "Electron-Excited Hydrogen and Helium Collisions", by E. J. Mansky and

M. R. Flannery.

4. "Symmetric Charge-Transfer Cross Sections in Rare Gas (Rg+-Rg) Systems",

by E. J. Mansky and M. R. Flannery.

1985: The following paper was presented at the 38th Annual Gaseous Electron-

ics Conference, October 15-18, 1985, held at the Naval Postgraduate

School, Monterey, California. The abstract was published in Bull.

Amer. Phys. Soc. (1986) and in Annual Report GIT-85-008.

1. "Variational Principle for Association/Dissociation in Dense Gases", by

M. R. Flannery, was presented at the 38th Annual Gaseous Electronics

Conference, October 15-18, 1985, at the Naval Postgraduate School,

Monterey, California.

1986: The following papers were presented at the 39th Annual Gaseous

Electronics Conference, October 7-10, 1986, held at University of

Wisconsin, Madison, Wisconsin. The abstracts were published in Bull.

Amer. Phys. Soc. (1987) and in Annual Report GIT-85-009.
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1. "Microscopic Perspective to Termolecular Ion-Molecule Reactions", by

M. R. Flannery.

2. "Detailed Investigation of the Thomson Model of Termolecular Recombina-

tion", by E. J. Mansky and M. R. Flannery.

An invited lecture entitled:

3. "Termolecular Association in Gases", by M. R. Flannery was presented at

a Conference held in Honor of Sir David Bates' 70th Birthday at Queen's

University, Belfast, November 17 and 18, 1986.

The lecture was published as a Chapter in the book "Recent Studies in

Atomic and Molecular Processes", edited by A. E. Kingston (Plenum Press,

New York, 1987).

1987: Invited and Contributed Papers

1. An invited paper entitled "Termolecular Recombination", by M. R. Flannery,

was presented at the 40th Annual Gaseous Electronics Conference, Atlanta,

held at Georgia Institute of Technology, Georgia, Oct. 13-16, 1987. It

is published in Bull. Amer. Phys. Soc. 33, $2 (1988) p. 122.

2. A contributed paper entitled "Orientation and Alignment Parameters for

e + He (21,3S) -# e + He (31'3P, 31'3D) Collisions", by E. J. Mansky and

M. R. Flannery, was presented at the 40th Annual Gaseous Electronics

Conference, Atlanta, held at Georgia Institute of Technology, Georgia,

Oct. 13-16, 1987. It is published in Bull. Amer. Phys. Soc. 3, $2 (1988)

p. 141.

3. A contributed paper entitled "Termolecular Recombination and Electrical

Networks", by M. R. Flannery and E. J. Mansky was presented at the 1988

Spring Meeting of the American Physical Society (APS) in conjunction with

the Annual Meeting of the APS Division of Atomic and Molecular and

Optical Physics held at Baltimore, Maryland, April 18-21 (1988).

8



The abstracts were included in the Annual Report GIT-85-014.

1988:

(a) A long paper entitled "Multichannel Eikonal Theory of Electron-(Excited)

Atom Collisions", by M. R. Flannery and a contributed paper entitled

"Integral and Differential Cross Sections for e-He (21'3S) Collisions",

by E. J. Mansky and M. R. Flannery were presented at the 41st Annual

Gaseous Electronics Conference held at University of Minnesota,

Minneapolis, Minnesota, Oct. 18-21, 1988. The abstracts are published in

Bull. Amer. Phys. Soc. 34, 12 (1989) p. 302 and p. 315.

(b) Two contributed papers entitled "The Poincare Sphere for the 2 1P, 31 P and

3 1D States of Helium", by E. J. Mansky and M. R. Flannery and "Orienta-

tion and Alignment Parameters for e-H(Is-3P,3d) Collisions", by E. J.

Mansky were presented at the 20th Annual Meeting of the (APS) Division

of Atomic, Molecular and Optical Physics held at the University of

Windsor, Windsor, Ontario, May 17-19, 1989. The abstracts are published

in Bull. Amer. Phys. Soc. 34, 05 (1989) p. 1371 and p. 1407.

(c) An invited paper entitled "Electron Cross Sections Involving Excited

States", by E. J. Mansky was presented to the NATO-Advanced Study

Institute, "Non-Equilibrium Processes in Partially Ionized Gases" held

at Maratea, Italy, June 4-17, 1987. It is published as a Chapter in the

Book, listed in §1.2.

(d) Two invited papers entitled "The Numerical Solution of Partial Differen-

tial Equations in Atomic Scattering Theory", and "Iterative Solutions in

Large Linear Systems and Heavy Particle Collisions", by E. J. Mansky

were presented to the Summer School of Computational Atomic and Nuclear

Physics held at University of the South, Sewanee, Tennessee, June 16-

July 7, 1989. They are published as Chapters in the Book, listed in

9



1.3.

(e) A contributed paper entitled "Stokes Parameter Analysis of the 31D State

of Helium", b- E. J. Mansky and M. R. Flannery was delivered to 16th

International Conference on the Physics of Electronic and Atomic

Collisions held at New York, July 26 - Aug. 1, 1989.

10



3. Special Highlights

In a series of papers, 19 - #12 of the list in § 1.1, the Termolecular

Recombination Process

A+ +B- + M -* AB + M (1)

was explored in depth. Exact treatments based on a Master Equation and on a

New Variational Principle discovered by M. R. Flannery were developed and

applied. Various approximate treatments as (a) The Diffusional Theory (b)

Strong Collision and Bottleneck Models and (c) a Coupled Nearest-Neighbor

Limit and Uncoupled Intermediate Levels Limits were also provided and compared

with experiment. In order to explain the research fully, the resulting

publications in J. Chem. Phys. are reproduced in the following Sections 3.1 -

3.4.

In §3.1, the Exact Treatment is discussed together with the Strong

Collision and Bottleneck Methods.

In §3.2, the New Variational Principle is developed and applied.

In §3.3, the Diffusional Treatment is presented.

In §3.4, methods of Coupled Nearest-Neighbor and Uncoupled Intermediate

Levels are presented and applied.

Since the Termolecular Process (1) is the simplest type of three-body

Chemical Process, it is essential to understand it in required depth, not only

because of its great significance in general applications but also because it

serves as a prototype for three-body reactions. In the following sections,

attempt is made to provide an exhaustive understanding.

Also a major review of Recombination Processes in General is included in

Appendix A.

ii



3.1 Exact Treatment, Strong Collision and Bottleneck Treatments.
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Termolecular recomblnatlon at low gas density:. Strong collision, bottleneck
and exact treatments

M.R. Flmnneryand E.J. Mansky
School of Phui=. Gergia nnute of TechnoloV, AlkOa. Gwria 30332

(Received 23 November 1987; accepted 24 Deoember 1987)
On introducing the probabilities for association as a function of internal separation R and
internal energy Eof the associating (A-B) species the strong collision model is thoroughly
investigated and compared, as a case study, with the exact treatment of termolcular ion-ion
recombination at low gas densities. A bottleneck model is also investigated. Analytical
expressions for the one way equilibrium energy-change rates at fixed R are provided in the
Appendix.

I. INTRODUCTION at zero energy and level - S the rate (1.3) reduces to'
The theory of termolecular ion-ion recombination, R A(t) - ,-

A+B+M aAB+M (1.1)
k (dn)

between positive and negative atomic ions A and B in a low f F, dF, F' - dE,
density gas thermal M is now well established. '' The distri-
bution n, (E,t) per unit interval dE of recombining pairs J -- ,) (1.4)
AB with internal energy E, a time t is governed by the colli- for a steady-state (dn/oa = 0) distribution of pairs in the
sional input-output Master equation: block W of fully dissociated states in the energy range

d n0<E4ca, over which the stabilization probability P s vanish.
Snt = -- - F es. The rate (1.3) therefore reduces" underQSS to the down-t ward current - J( - E) of pairs past energy level - E in

bound block W.
At low gas densities the expansion'n , (E a,,) 

A# ( t) v , ( t

- .,(E,t), (1.2) (t) = P,(N,)

CIE h,(E,) J7.-.
where v . is the frequency per unit interval dE, for E, -*Ef +P(E,) [ n t) (.5a)
transitions by collisions between AB and M, where J, is the +,.
upward current in energy space past level E, and where - D
is the energy of the lowest vibrational level ofAB relative to iPi(E,)rn(t) + Ps(EdnM(t) (l.Sb)
the dissociation limit taken as zero energy. For dissociated pernits separation of variables B, and tin thecollisional part
pairs with E, O, F is the net flux per unit interval dE of of Eq.(1.2). Herey,, y,, and , are the various time-depen-
(contracting) AB pairs generated with energy H, at infinite dent distributions of states in blocks ', f, and 40 normal-
internal separation R. For bound pairs with E <0, F is ized to their respective equilibrium values *,, ,, and ;,.
zero. The net rate for association is' For N' states, Ps and Pf - 1 - P 3are the probabilities that

f (dn,N state i is collisionally connected to the sink ? and to theR"(t)J P= f a t J dE, source W . For i states at low gas densitiesP , the collision
survival probability is unity when equilibrium conditions in=aNA (t)Ns(t) - kn,(t), (1.3) E and R can be assumed in the collision part of Eq. (1.2).

where Ps is the probability that E, pairs are collisionally When Eq. (1.5) is inserted the collisional part of Eq. (1.2),
connected to the product channel, i.e., have been stabilized then Eqs. (1.4) and (1.3) yield the expressions'
against dissociative collisions with thermal M. The effective ,N = -J( - E) = kA,
two-body rate constant for the association of A and B with
(cm-') concentrations N,(t) and N.(t) isa (cm's-'), f (1
andk (s') is the frequency for dissociation of those tightly J D ) (1.6)
bound pairs ofconcentratton n, (t), which are considered to for the rate coefficients a and k in Eq. (1.1). The collision
be fully associated with energies E, within a block J.' of low kernel Cif is the collisional rate h,vv (cm3 s- ,) per unit ele-
lying fully stabilized levels in a range -S>E,> - D within mentdE, dEf for E, - Ef transitions and varies linearly with
which the stabilization probability Pis calculated to be uni- the gas density N. At low N, a is linear in N so that "? 

0 are
ty. When the quasi-steady-state (QSS) condition dn,/dt W 0 required only to zero order in N. The net downward time-
is satisfied for pairs in a block f' of highly excited levels in dependent collisional current across arbitrary level - E in
the energy range 0>E> - S between the disociation limit block 8F separates as

4226 J. Chem. PhyS. 6 (7), 1 A 1rSl 06 0021 -9016/11074M2B-1 402.10 01 8 Afefnim Inaluts of Physics
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M. R. Flannery and E. J. Mansky: Termolecular recombnation 4229

- J(, E,t) = -j( - E) [NA (t)No,(tI TV. therefore acts as a bottleneck to the current. The level E * is,
in effect, a transition state. Each model therefore subdivides

-n'(t)/,(.7) the two dimensional (R.E) space into regions ofsome phys.

which under conditions of full thermodynamic equlibrium ical sipcance. The Thomson model has previously been
tends therefore to zero. addressed via a Monte Carlo simulation methods and indir-

"The multicolhsional stochastic aspect of the theory be- ectly by an analytical approach 9 based on collisional deacti-
comes apparent by correctly identifying the (time-indepen- vation ofdissociae pairs to levels lower than various bound
dent and density-independent) stabilization probability as levels. A more exhaustive and detailed investigation is un.

P~dEJ/[f~v~dd ertaken here. The bottleneck model has also received some
PS(E) = f (v, ) Ed previous consideration. '(l.(() Not only will these models elucidate interesting dynam-

ics underlying the recombination mechanism ( I. ) at low
which is the fraction of all collisions which result in gas densities N, but subsequent modification to cover higher
ation. Equation (l .8a) is consistent with the concept of a gas densities proves quite valuable towards a study (in prog-
Markov element chain, and when rewritten in the form of an ress) of the variation of the recombination rate a with gas
integral equation density N.

P-1fCdE,=f C,rPdEf, (1.8b) 1.T'ER

is seen, after substituting Eq. (1.5b) in Eq. (1.2), to be The detailed investigation of the strong-collision model
equivalent to the assumption of a quasi-steady-state (QSS) requires the generalization of the Master equation (1.2) to
E, distribution ofpairs with energy within the highlyexcited (RE) space and use of the frequencies vf(R) for E -E,
block W. transitions per unit interval d R dE, by collisions between M

The rate (1.6) holds forE = 0 and E= S to give, re- andthepairABatfiedinternalsepawtionR.Theappropri-
spectively, ate input-output Master equation satisfied by the distribu-

tion n, (R) of (A-B) pairs per unit interval dRdE, has
a;N.A N -j(O) f f dE= kCh.PdEf=ku, been shown'° to be the continuity equation

(1.9) d an, I A j(

as the collisional rate from the fully dissociated states i to

bound states f which are then collisionally stabilized with , (,(W(R) - ,(Rvf(R)IdEf
probability P, and

aA. = J( - S) =f dE, f C Pf dE,=== -= f Sr(R)dE,, (2.1)

(1.10) wherej '(R) is the net outward transport current of pairs

as the collisional rate from the fully associated states i to expanding at R, where S( is the net two level collisional-
levelsfwhich are then collisionally disrupted with probabil- absorption rate, and where V(R) is the energy ofinteraction
ity PI. Note that Eq. (1.9) or Eq. (1.6) is the QSS rate for between A and B. Integration ofEq. (2. 1) over all accessible
asaociation ofa full equilibrium concentration RkA I 3 of dis. R yields the customary Master equation ( 1.2) for dissociat-
sociated pairs into a perfectly absorbimg sink .V maintained ed and bound states.
at zero population, i.e., y, = l and y, = 0 in Eq. (l.5b).
Similarly Eq. (1.10) is the QSS rate for dissociation which A. Rat ad stabilization probanblItle
would result from an equilibrium population h, of associat- The steady-state rate (1.4), with the aid of Eq. (2.1), is
ed .J' pairs being dissociated into states i maintained at
zero population, i.e., y, = 0 and y, = I in Eq. (l.5b). RA(t) lir [4 R

In this paper two simplifications to the above exact f r-=
treatment at low gas densities Nare investigated in detail. In =fodEf"dC S,$( R)dE, (2.2)
the strong collision and bottleneck models, the probabilities 0 (
Pf are preassigned without recourse to Eq. (1.8). The first which either is the net inward flux of dissociated pairs con-
model assumes that P,,' for all bound pairs with internal sePa- tracting by transport across a sphere of infinite radius R , or
ration R is unity forR within the range O<R4Rr, whereRr is the net collisional downflow across the dissociation limit
is some preassigned radius, outside which P- is zero. In this atE =0.
strong coilision (or Thomson-style7) model, bound pairs Now assume (a) that there is a finite radius Rr for
with R<Rr are therefore considered to be fully associated which all E, pairs with R>Rr are in energy equilibrium at
andthosewithRiRT cannot be stabilized. In the bottleneck each R, i.e.,
model, Ps for bound pairs at all accessible R is unity for n,(R) n,(R)
A <E *, and is zero for E>E * and E isa (bound) energy n. . , R>R, (2.3a)
level within -2UT below the dissociation limit and past n(R) n(R)
which the one-way equilibrium rate is a minimum which where

J. Cham. Pys., Vol. , No. 7, 1 r I M

14



4230 M. R. Flannery and E. J. Mansky: Termotecular recombination

n(Rt)=J n(R)dE (2.3b)
is the concentration per unit interval d R of all pairs- with bisaactA~s

separation R. Thkus Sif i Eq. (2.2) vanishes for R>Rr to STATIS
yield00 MKO E MU

RA t=dEjfdRf Sf( R)dEf (2.4) 111111111LYil tillU

which is the steady-state rate of association of dissociated S1TATUS1

pairs with R<RT.
Association of RT complex: At low gas densities N, the 11

distribution n, (R) is independent of N so that the collision 6161O ULYAnwo
term Si remains linear in N. On the right-hand side of Eq. Associa~iso
(2. 1) n, (R) is equilibrium with respect to R, so that 11UI STATU

n(.)- hiR )(2.5a) FIG. 1. Schematic basis forstroqS 0collisions withain an assumed complex of
n, (EL ii, (E,) radius Ar~. A-U reladve mioaca i cuclar and highy eilliptical (lage R)

where the distribution per unit interval dE, is orbits with spends u and a' before sad after loa-neutrall collision.

n,(E,) = n, (R)d R (2.5b) arise from higly eliptical Coulomb orbits with low angular
JO momenta where the possible velocity vectors for relative

and R, is the classical turning point of E, motion. The sePa- (A-B) motion lie within a narrowly focused region. Upon
ration (1.5) is then valid so that Eq. (2.4) yields collision with the gas, the velocity vector is mainly deflected

a*A1N = f dE, FtdR f Cjf(R)Ps-.'E1 =k, into directions outside this region so that the Post-collision
.~ jf velocity vector cannot be consistent with bound states at

(2.6) largeR. Colisionaldisociation of these highly excited levels
for the rate of association of dissociated pairs in the complex at large R is therefore most likely to occur,8 and stabilization
of radiusR r. The required one-way equilibrium rate of bound levels fis not viable so that P7s (R>RT) = 0 in

Cj,() =A, vr() =Cfi(R)(2.7) keeping with assumption (2.3) underlying complex forma-
C~(R =~ (R~~ (R) =Cf(R)tion for association to proceed.

at each R is related to the R-averaged rate C,, previously For intermediate R, however, the poet-collision velocity
used" in Eq. ( 1.6) by can be accomnodated by many angular-momentum bound

Cr = ri'vi = A, R,(R),(,R)dR f it, C,(R)dR, (2.8) orbits, more final angular momentum levels are accessible at
I 0 ~ 0  these R =e2/2E 1, the radius of the circular orbit, and the

where Rf is the lesser of the two outermost turning points R, number of accessible orbits at a given R increase with in-
and R1 associated with levels E, and E,, of which one at least creasing binding. Collisional deexcitation. of highly excited
is bound. Detailed expressions for C,1(R) are presented in levels at smaller R therefore tends to occur and pairs with
the Appendix. R <Rr in all bound levels can be fuly stabilized, in keeping

Strong collision rate: In addition to Eq. (2.3a), asum with the strong-collision assumption (2.9).
(b) that all bound states! with R<RT are fully saiized, .The averaged kernels (2.8) have been previously de-

rived for symmetrical resonance charge transfer,' hard-
P7 = 1, R<Rr, E,( 29 sphere," and polarization 3 binary collisions between either

,r<O 2.9) ion A or B and the gas M. The R-dependent one-way equilib-.
so that the required strong collision rate is rium kernels Cif(R) are not only required for this sudy but

- -r also for ongoing investigations of the nonlinear variation of
a(RT);VANS- = dE, dRf Cif(R~dEf (2.10) a with gas density N. They are provided in the Appendix as a

Jo V(X)comprehensive package for present and future use and refer-
which is the one-way equilibrium rate that dissociated Pairs ence.
with RArT are collisionally deexcited across the dissocia- The exact low density rate ( 1.6) and the strong-collision
tion limit. The "complex" assumption (2.3a) is equivalent rate (2. 10) reduce to a sume" of rates a,, and a,, each
either to assigning in Eq. (2.2) zero probability Ps 0 for arising from A-M and B.-M binary collisions, respectively,
R)RTr and E,<0, i.e., to the overall neglect of association or andaA, can be presented'35"as auniversal function [cf. Eq.
to inclusion in Eq. (2.4) of upward equilibrating transitions (A55)] of the mass parameter
past E, - 0 for AR r. The strong-collision assumption
(2.9) is equivalent to the neglect in Eq. (2.4) of the rate a M M e
Ijvn,(Rt)v.(ROWE/for upward redissociation of pairs with MA (MA + Me (2.11
RRr. where MA, a, and Me are the masses of the reacting atom-

The physical basis to the two assumption (2.3) and ic ions and gas atoms, respectively.
(2.9) can be illustrated by Fig. 1. Bound states at largeR Calcuaton of Eq. ( 1.6), the exact low density rate aE
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andofthe variation of the strong collision rate (2.10) with 3.0 '

Rr can now be performed. For the exact rate (1.6), highly

accurate converge sodutions Ps of the integral equation
(1.6), discti as n R .3 into an equivalent set of 10 0  ...POL, /
algebr equaaio6 havebeen obtained. Previous r-ulta"
were based on 36 coupled equations at most. Convergence of 2.5 "

aE to within05% is found tobe nuch mor rapid f. inte- H
mediate mas parameters a (- /3) than forsmall and large x
a which required 100 coupled equations for convergent Y

ratea s .4
In contrast to ion-atom association where the radius AT 2.0 - CX

may, with some justification, be identified with the location
of the centriftgl barrier, no such assignment for ion-ion
recombination (without any centrifugal barrier) exists, al-
though Thomson 7 suggested R = 2e 2/3kTwhere the rela-
tivekineticenergy (kT+e 2/R)is reduced to jkT upon 1.e . . . I

collision. Hencebound pairs with E/ e 2(IRT - /R)<0 0 2 3 4
can be formed within U<r.

The variation with Rr of the ratio a(RT)/as for the -IkY
recoimbination of equal-man ions via symmetrical reso-
nance charge-transfer (CX), polarization (POL), and FIG. 3. One-way equilibrium ratw a,, ( -E ), Eq. (2.13). nornulized to

ad , the exact rate (1.6). acros enersy tevel -E for model ion-neutral
hard-sphere (HS) collisions with an equal-mass gas (a=1/ ittctwio POL. H, and CX.
3) is displayed in Fig. 4 The ratio is unity for R r in the range
(0.48-0.55) ( 2 /kT), in good agreement with Thomson's
suggestion. The neglect in Eq. (2.6) of a positive contribu- a (RT N, )A . f-- dE, Cde (2.12)
tion to association from possible collisional stabilization of (2.12)

those bound levels with A>Rr =0.5 (e21kT) is effectively which is ofcourse infiniteowing to the divergence, as E, -0,
offset by the neglect in Eq. (2.10) via Eq. (2.9) of a negative of the equilibrium density ;, (E,) - JEJI- 2exp( - E/kT)
contribution arising from redissociation of those bound of Coulomb bound states per unit interval dE,. As R -,
states with R<R the physical basis for adopting the one-way equilibrium rate

The strong coll'.--ion model is therefore capable of high (2.10) becomes untenable since bound states with large R
accuracy prwded Rr can be preassigned; realistic assi- are more readily redissociated (cf. Fig. 1). Upward cofli-
Meat to R r for recombination being only feasible' after the sions past the dissociation limit must therefore be included
exact treatment is performed! The radius Rr, once assigned, for large R r. The strong collision assumption is therefore no
may however be adopted in models under development for longer justified for large AT.
variation of a with gas density N. This divergence can be eliminated not only by maintain-

As R r becomes large the rate (2.10) however tends rap- ing R r finite but also by considering the one-way equilibri-
idly to um rate

aDm(-E)NAN.= J dE, J d (2.13)

across any bound level - E in block W'. Figure 3 illustrates
that this rate decreases from the infinite limit (2.12) at
E =0 to a pronounced minimum at an energy E = 2k T

4 HS// below the dissociation limit. Since Eq. (2.13) is an upper
limit to the exact rate by taking PS(E, > - E) and

POL .'P(E < - E) within Eq. (1.6) to be zero and unity, respec-

2-... tively, then its minimum value am, ( - E) is the least up-
2 .X "c per limit and is the one-way rate past the effective bottleneck

to the curent at - E* which, in effect, is a transition state.
Although this bottleneck model (2.13) is physically differ-
ent from the previous strong collision model (2.10), it is

00 0.2 0.4 0.6 0.8 1.0 worth noting that E 0 = 2kTcorresponds to a turning point
(M/ Rl Ar of J(W2/kT) for which the strong collision model is effec-

tively exact (cf. Fig. 2). Figure 3 shows that the bottleneck
FIO- 2. Ar vaadatoo(a(Rr, tle Itong-colleion rate (2.10)r-maized result is however a factor of 1.9-2.5 times larger than theto ae, the exact rte (1.6), ror equai-mas compoets oam ion-

neuntiactiwm(POL.plwatitMdHS:h&Wdtphem CX: symmetrical exact rate a . In contrast to the strong-collision model
rumuwsehar tpsk).Arrowslncatewharma(Ir) -a, for POL (2.10), Eq. (2.13) is always an upper limit since in order to
adCXis unof -R lkT. obtain the bottleneck result (2.13) from Eq. (1.6), the ne-
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4232 M. R. Flannery and E. J. Manky. Tenmalear reconmibrna

glected tem cannot cancel since they always reman neg -Pf C(R)d(2.20)
tive. This search for the least upper limit to the one-way (

equilibrium rate across transition state E* is identical in

principle to the variational phase-space theory of Keck' 3 as As Ar -R, theoutermost turning Point ofE, motion where
applied to termolecular ie-ion recombination. The strong IE, I = I V(,RI) 1, this rate (2.20) vanishes owing to the QSS

collision (Fig. 2) &d bottleneck pictures (Fig. 3) have been requirementd(t.8) o etpinch faluEpain with a<R,

previously displayed in a recent review' 2; the present CX inblock , aconditio o which calculationbofethe.stabiza

results in Fig. 2 correct those in Ref. 12. tion probabilities P sT ie bred-
Sftrng colinon and F/rmw ranobabiie. The corr-

I. Assoaod~ wr mme sponding strong-collision association probability Pris giv-

To obtain these, the low density rate (2.6) for associ- enby Eq. (2.18) with P= .e.,bytheprobability
ation of dissociated pairs in the Xr complex may also be pTs(Et)0,Rr) [
expresed with the aid of Eq. (2.2) as arr d 2 . ( 2.2 (1)

a(R )NA D f 4 I i- (Rr) PA(Rr)dE, Xf rdR fJ8  Cv(Rt)dE, (.1=(R )V T 'V 0 [4,~ r i I ( (221

(2.14) for direct collisional formation of bound levels from a disso-
ciated state of energy E. It overestimates the exact associ-

the net inward transport rate across the R r sphere where ation probability by
P '(RT) = [S (R1r) - n,+ (Rr) ]/nl (RT) (2.15)p Aam s(r)- (r

now species the destred probability that fully dissociatE, P1Pf(Ar) d

pairs which are originally contracting at RT will ssoci [rR 2r 1 (R )V (RT) ] - '
within the spherical Complex Of radius Ar. The distribUtion X*,
Ofdisociated pain contracting at Rr isR- (RT), the equi- Xf dA Cf()PfdE, (2.22)
librium value characteristic of low gas densities N, and is a O A)

nonequilibrium value n1+ (R) for pairs expanding at Ar. which in fact is the probability P " for subsequent redisso-

The One-way incident current at temperature T and per- ciation of bound pain formed with R<Rr and which is in-

nent to low N is the one-way equilibrium current herently neglected by the strong-collision modeL On defin-
ing the free path length4 A,(A) for continuum-bound

L,-(A)dE, = J-(R)v,(R)dE 1 = 1(R)v 1(A)dE (2.16) transitions in A-M collisions during the (A-B) trajectory

= I Sk )/2NANT. [I- V(R)/1E, b
4 iMA- A- '(A) [v,(R)/v,]

X (E,/kT)exp( - E/kT)d(E/kT), (2.17) [ f (A ]

whereM. is the reduced mass ofthe pair (A-B) and where
A, is A+ + h,-. By direct comparison of Eqs. (2.14) and then the strong-collision probability (2.21) is redefined as in
(2.16) the exact association probability of fully diociated irA .([ - V(A,)/E 1 ]Pfr(R)
pairs within ARtr at low gas densities is

P >,(E,>ORr) = [Tr ,R)v, lr) - !- VIR)I]d t, (A). (2.24)

X JrdR J C()P'(R)dEr The corresponding strong collision rate (2.14) is now
0o v J)'(2.18) ar(,Rr) = "G(EI)dE,

which increases linearly with gas density Nvia Cv. The sta.X
bilization probabilities P, which are solutions of Eq.(1.) - V(R )/E1)8dR/, (A)
do not vary with N. AsRr-®.Eq. (2.18) inEq. (2.14)
yields (2.25)

a,(E,>ORr) = rRAr,(RT), (R)P i"(E)O, Ar), where the (Boltzmann) distribution of internal energies
(2.19) (E, A) is

therate per unit interval dE, for association ofdissociated E, G(E)dE, = 1 (E,/kT) "'2 exp( - E,/kT)d(E,1/kT).
pairs with R< r. As Ar- ao, Eq. (2.19) saturates to the
exact partial rate. (2.26)

The association rate per unit dE, for the highly excited
bound E, pairs in block W of the complex of radius R, is WhenA,, is assumed to be A, independent of R and E,, as

for hard-sphere collisions, and when V(R) is neglected. Eq.
a,(E <0,Ar) ( [ 1rR1,(Rr)V,(Ar)]PA(E, <OR r ) (2.24) yields

dR [f C¢(R)PsdE, Pr(R)=IRr/A (2.27)

theThomson probability7 for (A-M) collisions during recti.
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linear A-B relative motion within R R. Also Eq. (2.25) 1.25

yields

ar(,Rr) - Ir .(/(2.2) .

the Thomson ralt in terms of V, the mean (A-B) relative W o.-s '
speed (SkT/IrMA )" All of the rates calculated here and
previously - are however normalized (cf. Appendix) to V o.o

3- (2.29)

where the woet-meani-square speed rather than V~ has been p4~ . - -

customarily used. and where J(e/kT) is assigned for R. o 1 2 3 " 4 5
Unless otherwise noted, all of the following calculations in l/k
the following sections (II C-I1 E) refer to symmetrical reso- FIG. S. PartW rue (2.30a) per Ana boud level -, £normahzed to ,
nanc charge-trafsfer ion-neutral collisions involving the Tom", to(2.29).
equal-mau species MA = M, in an equal mass gas.

C. Calcuatd au ilon aPd d p Figure 5 for the partial rate

The stabilization and disruption probabilities Ps and a(Ef)!V'N = Cf Cv)dE, ) P(E,)CP7 (2.30)
PI = I - Ps are the stochastic probabilities that (A-B)
Pair initially in a bound level E of block 9, will either normalized toEr, which is the contribution per unit normal-
become fully associated or disrupted by multicollio with ized interval (dE1 /kT) from level f, to the full association
the therma guS For a quasi-steady-state distribution of rate of all dissociated pairs, illusmrates that levels in general
bound p in block W, P7 are numerical solutions of the within kT of the dissociation limit, are mainly responsible
integral equation (1.8) and are illustrated in Fi& 4. Th for the asociation process. This is les so however for CX
probabilities PI increase from zero at the dissociation limit since deactivatio by symmetrical resonance charge transfer
to nm unity for bding energy jEfj>5kT. Note that Ps involves larer energy redu ctior t -s than for the cae of po-
=l/2=P, for .- -2kT, the bottleneck energy E* (cf. larization and hard-sphere collisions. The very rapid in-
Fig 3) bsedontheassumptioninEq. (2.13) that Ps is zero cream of a(Ef) from zero at Ef =0, not shown in Fit. 5,
for E>iE *and unity for E, < - E£'. The probabilities p o and subsequent decrease arises from the combination of the
for (1-E* Pnd7)nity for tise co-si disrpoiti Pf _monotonic increase from zero of the stabilization probabili--- ( - Pf') for multistep collisional disruption of thewe
pairs decrease fairly rapidly with binding energy JE I and am ties Ps and the rapid decrease from infinity of Cf, the colli-
negligible for bindino JE I> 5 kT. Since block ,- of fully sts sioral rate from the continuum to a bound levelf.
bilized levels is characterized by unit P, Fig. 4 suggests that Figure 6 for the E, -partial contribution
the block i? is composed of all levels with binding T. Z Mr.
Since the deexcitation frequency vf from the continuum di- (-
rectly to the rongly bound levels with Ef S - lOkT of to the exact rate for association of dissociated E, pairsper
block J is vanishingly small, association given by Eq. (1.9) unit interval (dEkT) illustrates a monotonic increase as
therefore occurs priMarily via multiatep transitions to the E, > 0 approaches the dissociated limit at zero energy. This
block I' oflevels Ef within the range o> E> - lOkT, which
are then connected stochastically with probability PJ to the
fully associated block " via a Maov-element chain.'

P10.O-4. StaN uamdun~eio. prebIld sohdo of EFq. (1.o5l) for PlO, 6. PIi rat. (2.3Gb) pelt iitia] omnuum state 5,. notralized to- al mum msts a,. dw Tbouia rate (2.29).
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4234 M. R. Flannety and E. J. Mamuly: Termotecular recombination

a(R;ETV = J da J C$(R)dE. (2.31)

0.8-,,. to the strong-collision rate (2. 10) with Rr are displayed in
*/ Fig. 7. They intersect the corresponding exact partial rates

Os - -(2.31a), represented as straight lines at RT, in the range
M.R, (AT r .R , a result consistent with the E,-integrated

AUrates of Fig. 2where r -5R 1 .

---- ----------- D. R variation of calculated Probabilities for multito
0.2- association

........ ......... ..................FigureS8 illustrates variation with AT of P-45 the exact
O 46I1 probatbility (2. 18) for multistep association via bound levels

00" 02 0. 0.6 0.8 o fE, - 0 Pairs with R4Rr, and of P ' the corresponding
(R,/ Re)strong-collision probability (2.21). The probabilities are

FIG. 7. Partial strong continuum rate a(,Rr£)- Eq- (2.31), per initial normalized to Pr., the Thomson probability (2.27). Also
continuum state E,, normalized to ar, the Thomson rate (2.29). Exac shown [Fg 8(a)]I is Pflr the normalized probability
normalixed partial rate are indicated by straight lines. E,/IkT- 0,0.26. (2.22) for redissociation of the bound pairs so formed with
0.529, 0.734, and 1.646 ordered sequentially fronm top to bottom. R<RT. Figur 8(a) emphasizes that association dominates

is epeced inc C~ffora gvenboud leel f icreses redissociation, within smaller R r 4(( 2/kt) 0 A. so that the
is xpetedsine C fo a ivn bundlevl E inreaes exact ad strong Probabilties P-and P3,, respectively, are

quite rapidly as the energy diffierence (E, - Ef) is reduced. euaFgre (b m asesttpiswthnlgr

Vaulratons oftheprlE , onte ritireosi. ATr)P. are mainly redisaociated. The strong-collision
Varatins f te prtil E cotriutinsprobability Pifaccurately represents either P-14, the associ-

O.S. ation Probability at small ArT, Or Jo,", the redillociatio
P1 : STRONG COLLISION probability at laWrg T, thereby providing the actual phys-

----------- ical basis for Fig. 1.
0.4- Within radius AT-0.45A., there is as much associ-

F1 0 R-DISOIATONation as redissociation [Fg 8 (a) I so that the strong rate is

"0.3 twice the exact rate for association of pairs with Rr0.45R..
The contribution of pairs with R)>0.45R, to the exact rate is

Us AtSSOIAIO however equal to the contribution from R<0.45R,, so that
-0.2 the exact rate form all R and the strong rate fromAR<.45R,

a. are fortuitously equal. This balance is the essential basis for
01agremn with the stronig-collision model as previously il-

lustrated by Figs. 2 and?7. Figure 8(a) also suggests that the

0.0 R r variation of the strong collision probability (2.21) is rep-
0.0 0.2 0.4 0.6 0.8 1.0 reetdaryel~, the Thoms1on result (2.27), over

(RT/ Re)the region RAA important to association, although the
______________________ magnitude is overestimated by a factor of :5 2.5.

I . . IAs the energy E of the dissociated pairs increases from

0.4 P"r. SRONG - COLIuION .

a.3
0.4- Fels ASSOCIATION

PRO: RIE-DISSOCIATION

a0.

0...........................................

(RT/ Re)...............

FIG. & (&).(b) PraiilsPPadP~frsrn .0 0.2 0.4 0.6 0.8 1.0
(2.21). association (2. Is), Ad redlisacciation (2.22) of (A-B) Pairs with (, e
e5mw 5 -0. Pmobabiitis awe normalized to the Thomson Probability Pr, /R)
Eq (L.27)sadwe preeted a aNaction of Rr (normnalizedtoRA. - d/ FIG. 9. Asin Fig. 8but for variousecontinuum eeies (E/AkT.0, 0.29.
k7). 1.09,1156, and 4.7 ordered sequentially from top to bottom).
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1.0, 4,:

0.8 " -

a 'a
0.6

-1 0.4 -
0.-. a... • o 1

U.0

0.. 0 .;

0.2 0.4 0.6 0.8 1.0 0 0. 1.0 1.5 2.0

(R/ Rj (R/ nj

1.2 FIG. I.R dexdeidceot'ben u (P, -F,) domnwardacroa variom
continuum (E/kT- OO.529.1.09, 1.56(e)-(h) repectively]mnd bound
[ - E/kT- 0.26,0.529. 1.09. 1.56; (d)-(&). respectively] energy levels.

0.9

N. with both normalized to the Thomson rate (2.29). For small
a . R<0.3R,, Fd increases more rapidly from zero and remains

/ -greater for allR than F. which eventually tends at large R to
Fd from below. This limiting behavior at small and large R

03 ,' \.-also elucidate the physical basis for the separate R regions in
V' C Fig. 1. Forbound levels (Fig. 10(b) J, both Fd andF. across

i.y ,. state (R,E) increase from zero to a maximum and then de-

0 crease as expected to zero at the turning points associated
0 o0.5 1.0 I.5 2.0 with energy E.

(R/ Rj Variation with R in Fig. 11 ofF(R), the net differential
flux (F, - F. ) across both bound and continuum energy

FI 0. levels Eexhibits a peak at rougly the same R (0.2-0.3) R
qL (2.32) and (2.33). upper and lower curves of each set, across vasioue

contiuum eerale -E/AT- 0. 0.529, 1.09, 1.56, and 4.7, (a)-(e), re- for all E. As E decreases through the continuum the flux,
spectivelyl and scrw various bound energies I - E/kT= 0,0.529,1.09, and R-integrated flux, f11 F(R)dR, increases. For bound E,
1.56. and 4.7, (a)-(e), respectively) in (b). the net flux increases and then decreases to zero at the classi-

cal turning points R, = e2/IE 1. The net R-integrated flux

zero, Fig. 9 shows that the probabilities for association of across the highly excited bound levels remains constant, i.e.,

these pairs and for subsequent redissociation decreases mon- the area under each of the bound curves remains constant in

otonically with E, and that the Rr region over which associ- accord with the QSS condition [dn, (t)/dt = 0 in block e,

ation exceeds redissociation becomes somewhat smaller. As so that the flux becomes constricted into more restricted R

before, the strong collision probability PF ' the sum (PAS space as E decreases through the bound levels. The resulting
+- P A) of ach pair of curves, tends to P "at small R, to increase exhibited in Fig. 11 of the net differential flux as E

Sat lindecreases is therefore expected. The E variation of the nor-pa at large Rr. The sum is fairly constant for the range aie -ngrtdetfu
OaR.(RT<E.,as i Fi. 8().ealized A-integrated net flux0.2R. 4RTr4A, as in Fig. 8(a).

L (RE) vwaa of ouucuatd flux and rat" [ Fd(R;E) -F.(R;E)]dR, E>s0

In Figs. 10(a) and 10(b) are shown the variation with R F(E) = R [
of the downward differential flux (dF= FdR), I [ Fd(R;E) - F.(R;E)]dR, E(O

rE (2.34)
F,(R'E) =4raR 2 J (I - P,)dE J CZ(R)dEf is illustrated in Fig. 12. That F(E<O) is constant simply

(2.32) reflects the QSS condition or constant flux through the high-

runit interval dR across various continuum [Fig. 10(a) ] ly excited block W'.
and bund Fig. 10(b Ineross v s ntiuum ofi 10(a) ] Figure 13 illustrates the variation with RT of a, the
and bound [Fig. l0(b)I energy levels E, and of the corre- exact partial rates (2.19) and (2.20) for the association of
sponding upward flux dissociated pairs (E, >0) and of highly excited bound pairs

F. (R;E) = 4rR 2 dE, (I - ps)C (R)dE (E, <0), respectively, within the sphere of radius R r. The
J) f former rate increases with R r and saturates fairly rapidly for

(2.33) large R to the exact rate for association which, in order to
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FIG. 12. Energy dependence of exact curren. Eq. (2.34). nonnahized to FIG. 14. Rae thatfl disbociated pairs (with a Mxwellin energy dislri.
ar, for the mociation of equal mass species under charge-transfer ion- bution) recombine within a sphere of radius R. The emact rate is as.
neutral collisions. Exna rate is the constant current across bound level.

maintain a steady-state blck, is the rate of generation of recombinng in an equal mass gas, Le., a, the mass parameter
ntan t y-t o, ha (2.11), is (1/3). In Fig. 15 is displayed variation of thesame

net inward E, pairs with infinite separationh ratio over the full range of a. Small a= 10- 3 implies heavyThe rates that bound E , pairs are lost also increase with p ril e o b n to nav nsi gylg tg s hl l c
Rr due to continual downwards output, but reach a maxi- particle recombination in a vanishingly light gas, while elec-
mum when the upward input from other levels becomes ron-ion recombination in a normal gais characterized by
competitive, and then decrease as a result to zero at the clas- lainea ro m -It is noted that the radiusR swhere a(Rr)
sical point R, ofclassical motion. There is a net loss of bound E increases from -0. IAR to u-0.tR, as the parameter a
E, pairs with small R and a net gain of pairs with larger inrase to un ry,andthendes eback againasthepa-
RR so that the R-integrated distribution (2.5b) remains rametera further increases. For greatly mismatched species,
constant in time. The zero rate at the apocenter R, in Fig. 13 i*.,in the limits of small and largea the energy-changecoi-
reflects the QSS condition (1.8) in Eq. (2.20) for no net loss sion dynamics is weak, and vanishingly small energyor gain of A-integrated bound E1 pisin block . changes are involved particularly for deactivating transi-

or g ob E intions across the dissociation limit at E, = 0. The stabiliza-
The rate a(R) of volume recombination within a sphere tion probability Ps in Eq. (2.6) and Fig. 4 is therefore of

of radius R, the rates of Fig. 13 integrated over E>Ois given f

in Fig. 14 as a function of R. It is worth noting that 60% of prime significance. To invoke the strong-collision assump-
theexat rte ,, a( - o )is chivedwitin he phee ton (2.9) for these bound levels close to the dissociationthe exact rate a, = a(R - Qo is achieved within the sphere l~

of the natural (Onsager) radius R = e2/kTas designated limit and important at small and large a is therefore without

by the avalidity. Although some physical significance can be at-
tached to R T, where a(R r) and ax are equal, for intermedi-

IIL MASS EFFECT IN STRONG-COLUSION MOOEL ate a- I, as previously discussed in Sec. II, no such signifi-
cance exists in the limits of small and large a. The-essentialFigres 2and 7illustrate the ratio of the strong collision reason why AR .O. IA5 becomes unacceptably small at

result (2.10) to the exact result af for equal mass species

.. ... - .-- ---- A

100 10

- ""iO
2 0.00 0.01 0.1 1

APO CENTER

.00 0.2 0.4 0.6 0.8 1.0
2 4 a 8 10

(R/ R, 
(Rr/R.)

FIG. 15. Mas effect in strong-collision model: Rr variation of the strong-
FIG. 13. Normalized rate equations (2.19) and (2.20) that pairs in contin- collision rate (2.31) normalized totheexact rateac. Eq. (1.6), for recom-
uum and bound energy levels E recombine within a sphere of radius R. bination of systems with vaious mass parameters a. Eq. (2.11).
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M. R. Flannery and E. J. Mansky: Termolecular recombination 4237-

these limits is that small A 0, effectively (numerically) off- small and large mass parameters a in particular were ob-
sets the large addition to the inner integral of Eq. (2.10) tained only when the integral equation (1.8b) was discre-

entailed by the strong collision assumption (Ps = 1) in Eq. tized into 100 algebraic equations via the efficient procedure

(2.6). The smaller exact values of P5 (cf. Fig. 4) are more of Ref. 3. Previous results -3 adopted 36 equations at most.
appropriate to the impdotant levels in the vicinity of the dis- Recommended values of the ratiol-3

sociation limit for large and small a. q(a) = (MA/MA) [a(A)(aT)/&r(T)], (4.2)

IV. RECOMMENDED LOW-DENSITY TERMOLECULAR where a8 is the exact numerical rate (A55a) originating
RATES from ( - M) collisions alone, are presented at closely

spaced a in Table I. The exact low density rate can be repre-
Due to the long-range Coulombic attraction and to the sented to a high degree of accuracy by9

use of shorter-range ion-neutral interactions (charge-trans-
fer (CX), polarization (POL), and hard sphere (HS)], a=c4.A) +aa). (4.3)
rates for the termolecular ion-ion recombination, Although the partial rates a" are tabulated here to four

A+ + B- + M-AB + M (4.1) significant figures, the recombination rule (4.3) as previous-

between general atomic species in a general atomic gas may ly tested was then shown to be accurate to three figures at
be characterized' by a universal function of the mass param- best or two figures at worst. The test however relies on the
eter (2.11) and of the gas temperature T [cf. Eqs. (A40)- accuracy of the solutions to the integral equations (l.8b)
(A55)1.Thisuniversalitydoesnotextendtoion-atomasso- with C, taken as C-,C¢ and [C+(A) w

ciation which, due to the closer interactions involves, de- C(
A MD( is the one-way equlibrium rate which results from

mands individual calculations for specific systems. As pre- individual A-M and B-M collisions, respectively. Since the

viously mentioned, rates (0.6) or (1.9) or (1.10) have been present converged probabilities Pf have been determined by
obtained numerically from Eq. (A55) via the highly accu- a numerical procedure 3 more accurate and efficient than
rate numerical solutions P'to the integral equation (1.8) for that' previously used for the test, the accuracy of rule (4.3)

the stabilization probabilities. Converged probabilities for is being updated.

TABLE L Nonnalind partial rates 10 (MA/MAs) (as&r) for tennolecular recombination A' + -

+ M -A + M afaction ofmassparameter a - MAM,/M (MA + M% + M,) forvariousinteractiom
(CX: symninetrical resonance charge transer HS: hard sphere POL: polariztion attraction) in collision
twem A and ps atons of rans Mo.

a CX" HS POL a H'r POL'

0.0010 1.291 1.278 1.029 1.500 9.452 6.751
0.0020 1.816 1.818 1.472 2.00W 8.593 6.044
0.0030 2.208 2.221 1.800 2.00 7.877 5.472
0.0040 2.530 2.554 2.071 3.0000 7.276 5,003
0.0050 2807 2.941 2.304 3.500 6.766 4.611
0.00D0 3.053 3,098 2.512 4.0000 6.328 4.280
0.0070 3.274 3.329 2.699 4.3000 5.947 3.994
0.0080 3.476 3.542 2.870 5.0000 5.613 3.746
0.0090 3.662 3.739 3.029 5.5000 5.317 3.529
0.0100 3.835 3.923 3.177 6.0000 5.053 3.336
0.0200 5.115 5.313 4.288 6.5000 4.815 3.164
0.0300 S.959 6.264 5.039 7.0000 4.601 3.010
0.0400 6.381 6.956 5.603 7.5000 4.406 2.871
0.0300 7.066 7.565 6,049 8.0000 4.228 2.744
0.06 0 7,456 8.042 6.414 8.500 4.065 2.629
0.0700 7.771 8.444 6,719 9.0000 3.914 2,523
0.0100 8.047 8.789 6.976 9,M00 3.775 2.426
0.0900 8.276 9.096 7.197 10.0000 3.646 2.336
0.1000 6.471 9.347 7.387 12.0000 3.212 2,036
0.2000 9.459 1.073, + ! 8.377 14.0000 2.875 1.806
0.3000 9.709 1.127, + 1 8.644 16.0000 2.604 t.624
0.3333 9.727 1.134. + 1 8.666 18.0000 2.382 1.476
0.4000 9.709 1.140. + 1 8.652 20.0000 2.1% 1.353
0.5000 9.600 1.136, + 1 8.547 50.0000 1.029 6.064, -
0.6000 9.446 1.124. + 1 8.389 100.0000 5.535. - I 3.177, -
0.7000 9.269 1.107. +t 8.206 50.0000 1.195,- 1 6,582, -2
0.800 9.065 !.087, + I 8.013 1000.0000 6029, - 2 3.253, -2
0.9000 1.840 1.067,. +1 7.818
1.0000 8.678' 1.046 + 1 7,623

lnCXsmallaimpliesMa4MA -MI;a- I implies MR M. =Mr.
I% ad MIL smalla imphes recombination in a vanishingly light ga and largea (= 30') implies electron-
ion recombinaton in s normal mss gis.

'Por CX, the oaxismum value ola is 0.998.
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4238 M. R. Flannery and E. J. Mansky: Termolecular recombination

The partial rates (4.2) are very insensitive to a realistic tion of gas species with concentration N (cm- 3 ) over the
choice ofeither the level - S ( S - lOkT), below which the kinetic energy
stabilization probability P is calculated as unity, or the low- T) = W, 4 (A5)
est level - D since the one-way coupling Cif connecting the
dissociated states i to any bound levelf decreases extremely of AB-M relative motion is the Maxwellian

rapidly and is qui; negligible for states with binding ener- No(V 3 )dv, = NG(T 3 )dT3 [-L d(cos ,3 )de0,J ,  (A6)
gies D as low as 30 kT, which is much smaller, in general,
than dissociation energies of normal molecules. where the distribution

The temperature dependence of a(" follows that of zr,
the Thomson rate (A40) with Eqs. (A41)-(A44). Results G(T2)dT, = (T,/kT)"2 exp( - T3kT)d(T 3 /kT)

of a recent diffusional treatment' are in close agreement with (A7)
those of Table I.

In conclusion, via an exhaustive investigation of the represents thermodynamic equilibrium at temperature T
strong-collision and bottleneck methods of the termolecular between 3 and the (1-2) center of mass.' 4 The reduced mass
process (4.1), interesting underlying physics and dynamics of the AB-M system is
of the basic process have been uncovered and studied. High- M, = (M, + M 2 )M 3 /(MI + X 2 + X 3 )
ly accurate rates have been presented (Table I) for future
use_ =aM= ( + a)M 3, (AS)

where a convenient mass paramete 9 for (1-3) collisions is
ACKNOWLEriMEN t a = M 2M 3 /M(M 1 + M 2 + M3 ). (A9)

This research is supported by the U.S. Air Force of Sci- The (1-2) center of mass is at rest before the (1-3)

entitc Research under Grant No. AFOSR-84-0233. collision which changes both the kinetic energy

APPENDIX: ONE-WAY EQUIUBRIUM COLLISION T2 = jM12 (v1 - V2) 2

KERNELS C(R) = Mv ; M=M1(I+M/M2 ) (A10)
The one-way equilibrium rate per unit interval of (1-2) relative motion to T;j and the internal energy

dR dE dE for E, -El transitions in the microscopic pro-
cft% E , M + V(R) (All)

(A-B), + M-(A-B) ,, +M (Al) at a fixedR by

at specified internal separation R of the pair AB is = T 2 - T 2 = 2[ ( ; V2)2 - (T I - V2)2].

Ct(R) = fi(R)v(R) = i [vO(R) + v '(R) ]. (A12)

(A2) The (1-3) relative momentum is changed by

The equilibrium distribution n1 (R) per unit interval dR of P M, 3 (9' - g) = M1 (v; - "t ) = M 3(V3 - v)
(A-B) pairs with internal energy E, internal kinetic energy (A13)
Tt, and reduced mass M,, is and the (1-3) relative energy T3 remains M13 g

2. On fol-

h, (R)dE lowing from analysis in Ref. 15 it can be shown that the
Jacobian J 2 in the angle-kinetic energy transformation

2 d(cos 83)d - J 2 dT3 dT12  (A14)
(kT/"' exp( - E/kTd(T/kT) (A3) by

f
11 Tk is given b

at temperature T. The frequency vf per unit interval dEf for
, -Ef tranitionsisassumedin Eq. (A2) tobethesum vl JI(,T,,,T3 e)

+ v 'oftheseparatecontributionsvV/' that arise from (A- (1 +a )2 [(T 2 TIT,3 )
M),j= 1, and (l-M),J = 2, binary collisions at fixed R. 2a
The species A, B, and M denoted by indices 1, 2, and 3, X (T1 2 + T3 - T13 ) (p + -)(IA _p-)-1/2
respectively, have masses Ari, reduced mas Mt and veloc. (A1)
ities , and v beforeand after the (1-3) elastic collision with
differential cross section a(g,*) which changes the (1-3)
relative velocity from g along the polar axis to g'(*,,). The scattering 0 region accessible at fixed T 3 , T3 , and E is
Hence the (1-3) energy-change collision frequency is the range p-< cos bp', with limits

#* = (1 - 1"2)112(1 - r )" /2 ± r r, (A16)

v,(P"(R)dEf [f N0(v3)d, 1f ga(go)d(cos 0) d#, where
(A4) r,1 = [(T,+ - T,.,)(T13 - T,)]

where the integration is over the (v,) region of velocity f4T,3(T 2 + T3 - T13 )) (Al7a)
space accessible toE, -E transitions. The velocity distribu, and
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M. R. Flannery and E. J. Mansky: Temolecular recomnbnation 4239"

r- [(i - T, 3)(T.3 - where T is T,, + T3 as in Eq. (A23). Integration over R

yields an expresion identical to that of Bates and MendaL3
[4T 3(T,2 + T3 - TO3 ) . (Al7b) Case I: For hard sphere collisions when

The accessible T3 region accessible for fixed T3 and E is _=0 (A28)
the range .= 43r

T =max(T T ),T, 3,<min( T ,) = +  then'

(AIS) ;
which ensures real , where C ()(R) exp( - E/kT)' n"i (2*,3)P1(kT) exp -Ek

T (T 3 ;T,2 )a , ....2 2 ) 2 /(l + a) (Al9a) [(- T)" 2 
- (T- T+)/ 2 ]d(E/kT).

is a function of the initial kinetic energies, and where (A29)

T3-(T,;T2 ) = (T, 2 / a"2 T;12)2 /(l + a) Case HL. When or(Ts3,0) is a function only of momen-
(Al9b) turn change P as for the Born approximation or for pure

is the same function of the final (1-2) and 3 kinetic energies Coulombic attraction when
T',= T12 + e, (A20) o(T 3,) = 4eM /P 4 = o(P) (A30)

T; =T 3 - e. (A21) and by finding the Jacobean J3 in

Since d(cos 03) dO d(cos *) =J 3dT 2 dPdT,3  (A31)

i,(R) No(T)dT3  then from previous analysis," it can be shown that

T 1/ T1/2  / (R) 21/2(1 +a) (NANN)4 (N(R) )
4 (NAN) exp - (E/kT)d(E/kT), (A22) a]12M13  (kT) 2

where xfexp( - E/kT)d(E/kT) J o(P)dP,

E = E, + T3 = (T 2 + T3 ) + V(R) = T+ V(R) (A32)
(A23) where the limits to the momentum change P for specified

then the contribution to the one-way equilibrium rate (A2) v,"), v('), and e are
from (1-3) collisions is P-(vj,v3;e) = max[MIU; - VIIAIV - v31 1 (A33a)

if ") (R) =h, (R(,) and
a - 3  P (vv 3;e) = min[M (v , + v ) ,(v'W3  + V3)].

x (NANBN) exp( - E/k7)d(E/kT) (A33b)
I(kf)2 Case IV Symmetrical resonance charge-transfer (1-3)

Xj T T 13 Y1/ZdTif 01T1341) collisions
f _ X++X-X+X 4  (A34)

X [ - )Q( -_- ]- j_ /2 dp, (A24) between an ion and its parent gas simply interchange v, and

where Tis E - V(R), as defined in Eq. (A23), and where v3. At thermalenergies the integral cros section a* isessen-

E = min(E,,E) (A25) tially independent of relative speed g. It can then be shown
that'

ensures real T3 and T3' in Eq. (A18).
Case I: When the differential cross section o is a func-

tion only of T as for spiralling ion-neutral collisions under C ") (R) -- [(1 + c)/1r 1/2 (Nk"N3N)
pure polarization attraction when (2irM, 2 )"

2  
(kT)

31 2

=T,,) -(ame2 )1/2 (A26) Xexp l2c) (E+E)

where am is the polarizability of M, then X exp ( l G(E)dE (A35)
(R ) l2 (2c + )iJ
C1) (R) -- -- wer

where
0(1 + ) 2( r exp( - E/kT) c = MI/M,

aF, f&and where the fraction of Maxwell particles with energies E
(4P) 1/2 i(T- /12 in the range E - <E<E ' with limits

E* =c(l +c)/(l +2c) I[ T,/2±T, /1 1 (A36)

" d(E/kT), (A27) is
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4240 M. R. Flannery and E. J. Mansky: Termolecular recombination

S -rf for hard-sphere (1-3) collisions with (dimensionless) mo-
fO (E)dE [rfc(E/kT) 'l2 mentum-change limits P iP_, given by

(Elk-) (2 exp( - EM )I P_ (A ;r) = max{(u(r) - A 1 2 - (V(r) - I" 2 ;

Is- a [ (/ y + t) (y+), 2 ]} (A46&)
(A37) and

The above rates (A24), (A27), (A29), (A32), and (A35) P+ (AAu;r) = min{[v(r) -A ] ,/2 + [v(r) -]1 2;
satisfy the detailed balance relation Cf(R) = Cfi (R), and R a'12 y + A) ,/2 + ( y+/j) 1/21

integration of Eqs. (A27), (A29), and (A35) yields pre- (A+6b)
viou expreso. -3 

(A46b)

Computational equilibrium rate" C,, may be conve- For Coulomb (1-3) collisions,

niently expressed for computational purposes in terms of
dimensionless units, FC(Au;r) = exp( - Y)dY[P- P -

3].(A47)

A= - EkT, p= - E//kT, v(r) = - V(R)/kT, Forpolarization(l-3) collisions,
rf=R/R,, R. =e3/kT (A38) fby F.(Au;r) = exp( - Y)dYby Y

4wC,( (R) R 2 dR IdE I dEjI X [sin-'(G 2/A) - sin-'(GM/A),

=r[TF(A,;r)rdrdA du (cm s- ') (A39) (A48)

in terms of specified mass factors r and the Thomson (low where
density) rates, G,(Au;r) = max[I(Y+ A) 2

-T = jr(R,,16)3(3kT/M 2 )1 2
0 oN , 

f= 3/2, (A40) -a/ 2[v(r) -A ]1/2j;

where oo is the integral cross section for ( 1-3) collisions are ( Y + )1/2 
- a 12 [ v() -,u I' I/],

relative energy JkT. The appropriate mass factors r in Eq. (A49)
(A39) and cross section oo in Eq. (A40) are

(l+a 12  ff G2(AM;r) = min[ (Y + A) 1/2 - a'/ 2[v(r) -A ],;
a'1 k'l a / M,/ ); °1=0°" (y+/A),/2 a,/2[(r~)_A],12],

(A41) and
for hard-sphere (1-3) collisions with integral cross section A = ( +a) 1

2 [u(r) + YP/ 2. (A5O)

0 ,For charge-transfer (1-3) collisions

rc=rH; oo = a rR ~ (A42) [1 C
r(l + a) 9 F x(A,;r) = exp + l(A +A)1

for Coulomb (1-3) collisions with integral cross section e + 2c

which corresponds to Coulomb scattering by angles 0>r/2, Xexp[ - 1/(1 + 2c)r]
and to energy transfers e>(3/2)kT for equal mass species. [ ].
For (1-3) polarization attraction/core repulsion for colli- × effg-gexp(-g) , (A51)
sions within the orbiting radius, w-

() 3 1+a03 12 (M.,wer
M, 2 i a3g1± (ks;r) = + 0 [v(r) -A ],/2

ao = a " = 21r(aR/3)'/' (A43) (I + 2c)

and o ' adopted in Thomson's rate (A40) is the correspond- f fv(r) -U) /2}2. (A52)
ing integral (elastic or momentum transfer) collisional cross The universal expression (A39) is also valuable in that
section at (3/2)kTrelative energy. For (1-3) charge--trans- the one-way equilibrium current (rate) across an arbitrary
fer collisions, bound level v - E/k T is simply

13 N/2 3

rx= I-) ; =/2; 2a--- (A44) a., = rf =d f' F(AtA)dA, (A53)
where oo in Eq. (A44) is the corresponding momentum- whetew = - D/kTis the maximum binding energy in units
transfer cross section, taken as twice the cross section ax for of (kT) and where
charge transfer.'

The corresponding dimensionless functions F in Eq. F( ,u) = F(Atu;r)r2 dr, r, = I/max(A,Mu).
(A39) are symmetric in A and y and are fA

(A54)

F"(As;r) = exp( - Y)dY(AP+ - _]; This equilibrium collisional rate displays a minimum at
Jr * = (1-3 )k, the location of a bottleneck (see Fig. 3). The

Yo = max( - A, -) (A45) QSS rates (1.9), (1.10), and (1.6) reduce simply to
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a Ja df P .5o are easily determineds on using one of the relevant expres.

rF )P , sions, (A45), (A47), (A48), or (ASI), pertinent to the'

chosen binary A-M and B-M interactions of A and B with
a=rar dAJf F(A)P-(p)d#, (A55b) thegas M.

=rar f dA~ LP -(,u) - P -(A) F(A4 i)dp&, '~P lneyJ ba 1,69 8)

(A55c) 'M. L Flannery, Phys. D 14. 915 (1981).
3D. R. Bata and 1. Meada, J. Phys. B 15, 1949 (1982).

where e= S/kT. 'M. R. annery, J. Phys. B 19, L839 (1915).

Also various energy-change moments, 'M. I. Flannery, . Chem. Phys. S7, 6947 (1987).
"M. . Flanry, Ann. Phys. (N.Y.) 67,376 (1971).

(EI()fA = E,"L.E IA6 'J.Thoson Phillos Ma& 47.337 (1924).
1 _(Ef - E, Cf d Ef  (A56)

M"( FD P.J. Feibeman,. J. CbL Phy,. 42.2462(IM).
9D. R. Bata and M. L. FMawn, Proc. L Soc. London Ser. A 302, 367

are useful' in a Fokker-Planck reduction of the collision (1968).

term (1.2). These can be expressed simply as 1"M. R. Flannery, J. PhysB. 3.0, 4929 (1987).
D,(E,) = rGTVATV. (kT) t( - I)"- (A), "M. R. Flan-Y and T. P. Yan& J. Cem Phys. 73, 3239 (1980).

'M. R. Flannery, RewutStudiaofAuiic amndMoleularPcesms, edited
(A57) by A. E. Kinpw. (Plenum, New York, 1987).

wJe. C. Keck, in Advaces n Atmik and Molcula Piysua edited by D. R.
where the dimensionless moments Bate and 1. Estennn (Academic, New York. 1972), VoL 8; Adv.

1 Chem. Phys. 13,83 (1967).
( (t -,0)"F(A,4)dlz (A58) "D. p. Bate, P.B. Hays, andD.Spreak J. Phys. B4,962 (1971).

M "M. R. Flanne, Phys. Rev. A A2 2408 (1980).
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Variational principle for termolecular recombination In a gas
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A vaitatiGnl priziple for the rates of temoleWular Focese i proposed and then applied to
recombination between atomic ions with excellent results. The variational expression when

minimized with respect to stabilization probabilities is capable of providing rates identical to
those determined from the quasi-steady-state solution of the full Master equation Connection
is made with electrical networks and with the principle of least dissipation.

L INTRODUCTION collision and hence are unstable with respect to association,
An important objective in chemical physics is the for- while those below - E 0 tend to be deexcited and are there.

mulation of a variational theory of chemical reactions which fore considered as stable. For this one-dimenonal surface,
is exact in the sense that the deduced variational expression the Wigner-Kock treatment is then identical with the bott-

will yield, upon variation of relevant parameters, the distri- leneck method proposed by Byron et aL3 for three-body elec-

butions n, and rate constants which are identical with thoe trol-ion recombination. 4 For teroleculr recombination

obtained by direct solution of the exact Master equation for of arbitrary mass ions in a gas, this variational treatment

the particular process. The variational procedure of Wigner' yields rates' which are higher by factors of 2 to 8 than the

and Keck2 is "variational" in the sense that it yields a least exact rates' Obtained from a Master equation.
upper bound to the rate ofa chemical reaction as determined What is desirable is a variational method which will

from a Master equation. The reaction is represented by the yield a rate identical to that determined from solution of the
motion of a point (pq) in multidimensional phase Spa full Master equation. This search requires the addition, as

across a trial surface S which separates a block W of initial illustrated by Fig 1, ofablock V ofhighly excited states i for

reactant states i from a block of final product statesf. The which the reaction can go either way. The block is character-

one-way rateR that representative phase points flow (down- ized by the overall probability P for stabilization via down.

ward) across S-or flux of trajectories-isan upper limit to ward (5'-Y) transitions or by the overall probability

the actual rate since (a) upward reexcitation tostatesiabove PI= (1 _ps) for disruption via upward (IF - W) transi-

$ is ignored and since (b) a representative point which tions. This block ' lies intermediate between the reactant

passes through S more than once is repeatedly included at and product blocks (W and Y which are separately charac-

each pass. The additional use ofan equlbrium density h, for terized by P s = 0 and Pf = 1, respectively.
the reacting states then provides a rigorous upper bound Ro In this paper such a method is proposed and is then
to the reaction rate. A minimum--the least upper bound- applied as a case study to the well-developed example6 of
to R is then obtained by variation of the trial surface S. termolecular ion-ion recombination (1.1) in a low density

In ternolecular electron-ion or ion-ion collisional re- gas M. Connection is then made with the principle of least
combination

A+ + B- + M-.AB +M (1.1)

at low gas densities, for example, the "surface", can be taken
as some bound energy level - E of the pair AB so that an
upper bound to the two-body rate constant a(cm

3 s- 1) for

recombination (1.1) is £

N - FULLY DISSOCATED FPAS- P- 0

rate per unit interval d dEfor transitions between energy ......
level E-an E of AD pairs The eve -, IN searte th

"rectant" block ' of states i with energies E, in the range PU.L AMOIA

--E E fromthe"product"blockof.states.f.with .... -o-..o

eneri Eiantherge - E>Ea -D, where -Disthe
lowestenernyleveloftheAB qirre tivetoadis ociation, I , , , . L ,

limit at zero energy. A minimum to R . occur at (A SI SEPRATON
-e = - a * which therefore a a bottlene- or transi- FIG. I. .1ch Uai9m of'energy blcks . V, andY pertinent to

tion state. States above - E are more likely to be exited by re..a.bias .. .t low u de .iti .

214 J. Clm . Phy. U (1), 1 July ofS s021-tO6lte rg130214-0sE02.1O c) 1 8 AmE,1a instfhett of Ptyscs
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M. R. Flannery: Vanationl principle 215"

dissipation, well known in heat-conduction problems and in ed reactant states, n, at low Ncan then be taken in the coUi.
electrical networks. By analogy with this principle for a sional part of Eq. (2.4) as its thermodynamic equilibrium.
network of resistors, Bates7 very perceptively postulated value ft, so that PszO for block I. The effective two-body
that a minimum would exist, with respect to variation in the rate constant for the association of A and B with (cm- 3)

normalized time-independent distributions concentrations N, (t) and Ne (t) at time t is a (cm3 s-').
S( E,) =n/ ,imn the Gme-independent measure: The constant k(s-) is the frequency for dissociation of the

tightly bound pairs in the product block Y- of levels with
, f f , r (1.3) energies A in the range - S>Z,> -D, within which the

stabilization probability PJs is unity. In the intermediate
of the total rate of restoration to thermal equilibrium. Men- block ' of"reacting" states with O>E, > - S in Fig. 1, the
digs then noted that minimum ,' is obtained for a quasi- probabilities Ps must be determined. The net rate for termo-
steady-state distribution of excited levels determined by lecular dissociation in the closed system is

CfcdE,= f __y CdEf. (1.4) R(t= D f__,(t PO )d, =-R A(), (2.5)

The present formulation permits the identification of this.& where P I - Pis theprbability that state i is ollision-
so minimized with twice the actual (quasi-steady-state) rate ally connected to fully dissociated channels (at infinite A-B
constant separation).

CITA i =f& Ef (r - y,)CCdE, (1.5) The proposed variational principle now asserts that the
)-EJ-D jprobabilities P',o and densities n, have energy distributions

which is the net downward constant energy-space current which ensure that R ".() of Eqs. (2.2) and (2.5) are ex-
across any level - E, in the block 9' of excited levels in trema at time t.
quasi-steady-state. A supplementary calculation of Eq.
(1.5) with the variational result of Eq. (1.3) is then not A.Thequai-stsmd-ttadeduction
required. Note that the upper bound [Eq. (1.2)] is recov- Rewrite Eq. (2.2) as
ered upon eliminating block W by assigningl> D) =0 in e- R =~t
ther Eq. (1.3) or Eq. (1.3). f-a'k )EdJ' (2.6)

I. VARIATIONAL PRINCIPLE in terms of the net downward collisional current

The net rate for termolecular association - (Et) dE, _[n,(t)v,,-n(t)vj dE-

A+B+M AB+M (2.1) (2.7)

betweenAandB inagasMis past level E. Since J, vanishes as E, tends to both - Dand
b, the rate is then

jt (t) = "oPs~,( )E (22 ( = " (-- ds
R ft fDP dt ) dEj (2.2) R A(t) = J(E0 ), dE,. (2.8)

= aNA (t)N(t) - k n(t). Since Psis constant (Oand I inblocksW' and-,, respective-

(2.3) ly), Eq. (2.8) further reduces to

where P S is the stochastic probability that a pair AD with (dP s \

internal relative energy E, is connected via a series ofenergy R F(_)=JJ,(Et) - dE1 . (2.9)
(state)-changing collisions to a sink Y of fully associated
AD pairs. The concentration n, (t) of AD pairs with intern A necessary conditionfor the integral
energy E, of relative motion in unit interval dE, about E, I= Fy(x),y(xl;xldx. *=dy/dx (2.10)
develops in time t according to the standard Master equa- X(
tion' to exhibit an extremm is given in the calculus of variations

d,( _ by the Euler-Lagrange equation'"

W - [ (n,(t) vf- m,(t) vft IdE,=- d a8F aF
(2.4) j-'-= 0, i=l,2,...,N, (2.11)

where - DS stheenergyofthelowest vibrational levelofAB the solution of which determines y(x)i aly(x) I over the
relative to the dissociation limit taken as zero energy. fixed range x,<x~x2. Write xaE,,ymPf and

The frequency per unit interval dE for E, - E transi- F(y(x);x)wJ(E,) (dP7/dEd). The integral (2.9) is then
tions in AD by collision with gas species M is vr which is
linear in ps densityN. At low gas densities, R is linear in N an extremum provided
so that PT is then only required to zero order in N. Over the Oa,,M0m - dnI- 0>A>- (2.12)
range 04B, E4o which deflnes the V block of fully diaociat- M, di-

J. Crm. PtFi.. Vol. S. No. 1 1 J* Iy9W
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218 M. R. Flannery: Varanal principle

for each level i within block W'. This is the quasi-steady-state which is now time independent and is always positive. The
(QSS) condition for pairs in block W' with n, (t) distributed upward current Ipast energy B in Eq. (2.19) separates simi-
so that A, the current (2.7), is constant over all energies larly s 9

( - E) of block I'. The extremum rate, obtained from Eq. J(Et) [y(t) - y, (t) ]j(E) , (2.22)
(2.12) in Eq. (2.9),. is theathe net downward current across whr
botfndlevel - Ef block I' wer

R~~~(t) C =~~~~ J ( E t f d 1 ( ) f d f P p) C d i (2 .2 3 )

Since Eq. (2.20) is an extremum provided the QSS con-
xI [, (v-f (t)vN I dEf, (2.13) dition (2.12) holds, i.e., Eq. (2.19) vanishes in block 4'

J-.awhere Eq. (2.23) is constant, then the probabilities P fsatis-
which depends on the probabilities P7 only implicitly via np. fy the standard integral equation'
AsA tends from above to the dissociation limit at E =0,

J(Et) increases monotonically to this rate.' PTif CedB,-= C, Psd,. (.4

I ArYVO When inserted in Eq* (2.21) the solutions Ps yield after
From Eq. (2.4) the distribution some reduction the extremum rate constant,

Y,(rM =n1 (B,,t)/h1 ,(Ed) (2.14) R* = a. TV. TV
normalized to the distribution Ai, for full thermodynamic fd j: P-P)CEI (22a
equilibrium satisfies dj (s-P)Crd

dn, dr-yr
=t'd -B f.. ((t) - yf(t) ]Cf dE,, =J dEf ICfPdE,, (2.25b)

where the one-way equilibrium ratef dE CPd,(25c
CV= A1, VV = i Vfl= f (2.16) fd f Cv B,(22c

satisfies detailed balance and is linear in gas density N.On where - Eis any evel in block, including the if-ifand
introducing the implicit dependence of n, on the probabili..- - boundaries at 0 and - S, respectively. This extre-
ties P 110 via the separation! mum simply confirms the identification in Eq. (2.13) of rate

0 = 0 +P isr, (.17) with current. The nature (maximum or minimum) of the
r~U)=Pf 1(t +P7,(t, (217) extremum becomes apparent on performing independent

where variations 6Pf to P I for each level in block V' subject to the
y, (t) = n,(:/h, = N, (:ND(t)IJA Re (2.18a) constraints

adPs7=0- 0<E1<,,, (2.26)

are the respective concentrations n, (t) and n, (t) Of fully associated with blocks if and .,respectively. The resulting
dissociated pairs with enegie A~ in the range O'<E, < = of change in Eq. (2.20) is
block W and offully associated pairs ofblockr normalized AR -(t) =2[r(t) - -r, (t)J

toterrespective equilibrium concentrations iand h,,
then Eq. (2.15) separates as' X[f dE,.SPsf (Ps-..P

dn, t f)C l

Xf"(Pi-P)C,,dEI= - . (2.19) 4- (2.27)
dE, (,7

Hence the macroscopic rate (2.3) is now to second order in 6P For an extremum the change AR ' to
first~~~~~~ ~~~~~ ore*n87vnse ota q 22)i eoee

R~() aNAN*[yt)- .(tJ - D~), from Eq. (2-27). The change to second order in6P sis deter-
(2.20) mnined by th. sip of (?,- ,). When, (o >, (f')so that

where the association rate in units of the time-dependent the overall direction, according to Eq. (2.20), is association,
diferM c , - r,) is the rate constant then the extremum toRA -4isa minimumand the dissociation
ak.AsN - k,, (2.21a) rate A' in Eq. (2.20) is a negative maximum. When

,,(1) > (t) so that the overall direction is dissociation.
f dEl f(P-P) C.fdB, (2.21b) thenRtA iSanegatiVemaximUn4 &WndRDiSa Mon;um.The
ED proposed variational principle governing Eqs. (2.2) and

' f dE, f "(P-1- Ps I CtvdEf (2.210) (2.5) thusasserts that the rateRA' or R *, whichever corre-
2)-.. J-..sponds to the overall direction always adjusts itselfto a min-

J.t Chem Phy., VOL 0. No. 1,1 Msy 19
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M. R. FlIfler: Variational pricop 217

imium, i.e., the Probabilities PT are so distributed that they liet..................
tend to counteract the change so as to impede the progress
towards fulequiibrium (when y, ,- ). The rat R.in 1S I

Eq. (2.25)isamini umtoEq. (2.21).

integral equation (2.23) in Eq. (2.25a) for the rate constant, /
an alternative procedure is therefore a direct search of a min.- (3)10

imum in the rate (2.21) with respect to variation of Ps, a /
procedure simila to that noted by Mendal with respect to 1.06 \
variation of Eq. (1.3) with respect tory,. The present vah- %. 7
ational Principle however provides a variational expression L . . 1~ 0

(2.21) for the actual QSS rate (2.25) obtained otherwise 17 0

from the Maste equation.
Although the present analysis has been developed with FIG. 2. Rabooftbevarkdom raft (2.21) totbeexact QSS rate (2.25) as a

termolecula ion-ion recombination ( 1. 1) in mind, it may fucino aitonlprmtrA0 ( 1): One parameter function (2.30).
be esilygenealizd toinclde in-atm asociaion(2) and M3:Two- and thee-parameter functiona (2.35) with a = 1.b = 0

be +aal B~~~ e to M nl d io -ao AB+ + M (t .2n and a - 1. b - 0.7, respectively.

between atomic species in s low density gas M. Here quasi- duction of a more sophisticated three parameter (A *,a,b)
bound levels (E, L ) of ABcan beformed with E, >0 tra unto
within the centrifugal barrier associated with internal rela. dPs(AtA *,ab)/IL4 = AA( + aA + &A 2 )e ~
tive angular momentum (squar-ed) L 2. By adopting the an. (2.33)
satz [(Eq. (5.2) of Ref. 5S] for the distribution n, (E,, L 1) of where, in terms of the location at A 0 of the maximum to Eq.
AB'* pairs in terms of the stabilization probability (2.33), A* is the function
P s(E,L d) then expression (2.2 1), generalized to include ( ab)A1 .. + 2 /l+ 3A)
relevant integrations over L f and L Pi aidwih~(.4
to PTE,,L 2) so asto provide aminimum which is then the (.4
required QSS rate evaluated atA A.

Integration of Eq. (2.33) subject to the constraints Eq.
(2.26) determines the normalization factor A and yields

C.APPIGBIUM to twIPlUw TSO rcanlbluim Ps(A.,A *,ab) = I1- (1I + X+ Xg(X) 2J exp( - X);
Since dP isdE, tends to zero asA,- 0 and as A -S x=A/A,, (2.35)

(taken now to be - an ), the simplest one-parameter (A a) where
trial function is provided by

dP5I(AA0 Ae 2) g(x;A,,a,b) = A,, (a + MbA. + M Wx)

... AEAf) (229 + 2A, + bA2, (2.36)
whereA = - E,/kT is the binding energy in units ofkT, the The derivative is
mean energy of the gas M, and where the variational param- dPs(A;A, ,a,b)
eterA ais the location of the maximum atA .A aof Eq. [ (x +aA,.e+ bA2 x)/
(2.29). Since P(as )-P(0) is unity, then integration yields d
the normalization parameterA tobe(l/AO)2 and (I+ 2aA, +6bA')]exp( -x).

P5AA* -I+x x_ )x=A1 .(-0 (2.37)

PsA , as a c-am +xudy tep w-xeele -A/ampl (230 Figure 2 illustrates that minima r = 1 .0008 and
Cer o nsider, asso cas bsudy the n weldveo e ex m leo = 1.0029 are obtained for two-parameter (A * = 1. 3962,

teroleula i~-io reombnaton'a = 1 .0, b - 0) and three-parameter (A a = 1. 5348, a = 1. 0,
X + + X + X -X 2 + X (2.31) b = 0.7) trial functions, respectively, and that these minima

between equal -as species, Necessary integrationis of Eq. agree with the calculation of the exact QSS rate (2.25).
(2.2 1) and solution' of the integral equation (2.24) am per Comparison Of the corresponding probabilities for all three
formed by choosing 72 pivots each in blck W n c variational case with the exact QSS Solution 6of Eq. (2.24)
cording to the procedure outlined in Rd.~ 11. When- Sq. is given i Fig. 3 (a). The two-parameter fuinction is graphi-
(2.30) is inserted into Eq. (2.2 1) and when A 0 is varied. th cally indistinguishable from the numerical QSS solution in
long-dashed curve in Fig. 2 is obtained for the ratio Fig. 3(a). The agreement is in general very good for such

A (Aa A )/,o (232) simple variational functions, and could be easily improved at
r-RA-~/*, 2.2) larger A by insisting that Pf- I as E,- - S= - ( 10-20)

where R. isl the exact QSS rawe (2.25) determined from the kT rather than as E, - - ws in Eq. (2.35). Although the
direct solution' of Eq. (2.24). Not only does the single pa- two-paramileter function provides a slightly better represen-
rameter A * 1. 1624provde aminimum to Rbut it am tatiOn we note from Fig. 2that the rate (2.2 1 )is not overly
Yieldsathe exact result to 1% accuracy with r 1.011. Intro- sensitive to the _.nall deviations in the probabilities.

J. Chain. ""w.. Vol. SO. No. 1. 1 July Irn
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218 M. R. Flarwfy: Variabonal picpl

to second order in the energy-change moments

D( (E) -- E,) V dE (2.40)

For QSS of block If,

I- P 1( , - ,, --- X,(E,) (2.41)

GA - k-dET kdE IS (so that (dPT/dE) exhibits a maximum where Di"), the
average energy incr e r second, pawns though zero,

S0.2- (3 which in general occurs atE - (1-2) kT. The above
trial expressions (2.29) and (2.33) therefore implicitly ac-
knowledge the physical tendency for collisions to excite

1 - 3 4 n those pairs with E> E?* and to degrade those with E < E?*.
Once Ae has been variationally determined by the present
procedure, it will only coincide with the actual location of
the zero in D V) to the extent that approximation (2.39) is

0. , valid. If so the expressions then imply that the ratio (kT)
D "/DIz2) may be represented quite accurately either by the
simpleform (1/A - I/A *) orby themorecomplicated form

0. (I/A - I/A, respectively. Both forms yield zero at
,..,,-(3) A ,A *. Interestingly enough, the zero ofD "' forsymmetri-

N CUcal resonance charge transfer collisions occur at A? 1.329
in close agreement with the two-parameter variational and
exact calculations [cf. Fig. 3(b) ].

The solution of Eq. (2.41) subject to Eq. (2.26) is

Ps( -E) = f dEfexp tE , dE,}
I~ ~ ~ ~~~~f . If I,,,IJ,,[

I I- ' X[ dEfexpif XdEjJ

(2.42)
FIG. 3. (a) VriaticM prombilie (2.35), (1), (2), and (3) a a functioa
of normaHzed bound energy ( - E/k. Parameters (A *Ab) Wen by in block W. When the approximation'
(1.1624.0.0), (1.962.1.0), and (1.5348.1,0.7). respectively. Exact QSS
probility (Z.24):(E). (b) Carmpondingderivabvie. D d , ) (2.43)dE,

between moments D ' and D 121 can be invoked, then

A more sensitive test' is provided in Fig. 3(b) which exp X, dEl =D 
a (O)/D 2 )( - E) (2.44)

displays the corresponding comparison of the derivatives. f

All of these variational curves and the direct QSS solution of so that Eq. (2.42) reduces to
Eq. (2.24) display maxima almost equal and located in the rro 1
same neighborhood. This location has physical significance Ps ( -E , )=U dEID'2 ( -Er)j
and is perhaps key to the overall success obtained. This is i

most easily illustrated by expanding X[f dEf/D1z(-E,)J-'. (2.45)
_SP [d~ Of]_'

= (E EI) dE, J This expression (2.45) has been used in Eq. (2.21c) to pro-
vide accurate rates aD in a previous difbsional treatment.'

+(Er- ) d 2 J + (2.38) The more basic expression (2.42) iscurrently being tested."2

There are now two accurate treatments which provide

in powers of the energy difference (E - E,) so that Eq. accurate analytical representations of the collisional stabili-
i2.19) yes zation and disruption probabilitie-the previous diffu-

sional methods and the present (two-parameter) variational

- ,(t) , (t)J dn, = D,( [ dp' method. These rults D from Eq. (2.45) and V from Eq.
rt dE, J (2.35) are compared in Fix. 4 with the exact numerical solu-

2 P dtion Eof Eq. (2.24). Due to a more accurate evaluation of
+D2 [" ] (2.39) D, the present diffusional results differ somewhat from

[dE J2 those previously reported.' The resulting rates

J. Cram. Phy.. Val.9 .No. 1. 1 kJy 1 ON
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1.0 -dn
.o M = - - ( (3.1)-

0.3 where the current in the i-fsegment is

1(f(t) ff [r,() - Y(t)] Ci. (3.2)

(Va This reduces under Eq. (2.16) to

/ 4(t) = ((e)- y,(t) ](P - PS) Cfs (3.3)
~o~a 7 z[tr~t) - ,(t) ] io,.

02 The formal structure of Eqs. (3.1) and (3.2) is identi-
call to an electrical network where the current !(f along the
line element et, from junction i to junction in the network is

O 1 a I-Mr) 3 4 *equivalent to the time-dependent voltage drop
IVi(t) - [yM(t) - f (t) (3.4)

0. , , ) , . . , . . . , . . , = r (t) - r,(t) ](P ' - P D) (3.5)
times the conductivity C., = R ir ' of the line element of re-

oA - sistance RV.

Since, Eq. (3.2) is Ohm's law (V,,(t) = 4((t) R),a
0.3 time-dependent potential

Va V, (t) = 7y,(t) (3.6)

can be associated with any level i. All states within the source
block W are at equipotential y, (t) and all levels within sink
block Y5' are at equipotential y (t). The potential r, of each
W level i is below y, by an amount

, , I~~~V, M ,, Y ... = ... [,r M , ,, V ='t)- () PSy (t) (3.7)

0 1 2 3 4 a or is above y', by an amount(-.&n V .= r,(M)- rM = P f [y,( M - , Mt] (3.8)

FIG. 4. (a) Probabilities and (b) corresponding derivatives in exact QS Hence in units of (r, - r,), Pi is the potential drop
(E), two.parameter (A - 1.3962, a - 1) variational (V2), and diffh- from le to i,P is the potential height ofiabove Jr, and !, is
sional (D) treatments, as a function of normalized bound eml ( El the current Eq. (3.3) along segment e,. Since Pf within W'
kT). increases with E, continuously and monotonically from zero

within Y to unity within W then

(ao/a, = 1.08, av/a, - 1) are not that sensitive, as be- Y V - (t) - r.t) ] - dE, -- 0, (3.9)
fore, to the larger discrepancies in Ps resulting from the dif- Of
fusional and variational treatments. where the sum is over each segment e, within any closed

loop (E,-E2 -E ). Equation (3.9) as already noted,7 is
I1. ANALOGY WITH (,C) ELECTRICAL CIRCUIT AND Kirchofis voltage law (KVL) which is based on the unique-
WITH PRINCIPLE OF LEAST IMPATION ness of the potential y, (t) at a given time and which ex-

Bates' has already provided the interesting anog with presses energy conservation for any closed loop within the
anetworkofresistors for thecas when y,(t) = l),y,(t) so entire (', 8, Y) circuit at time t.
that time dependencies can be omitted,' and has introduced
the vatiational fumction .', Eq. (1.3), as a measure of the A. OS5 ampllficatiore (R,C} circuit

restoration rate to thermodynamic equilibrium. Here capa- The QSS condition (2.12) for each level i of block f
citotrs are introduced (See. III A) so as to explicitly ac- (0>E,> - S) is equivalent to
knowledge time-dependent currents and voltages. The pres-) (
ent approach allows us to identify (Sec. IIIB) the MA(t)--/ (t) M
time-indepmdent function . with 2aNa N3a. f- - f--D (3. 1a)

The Master equation (2.15) involves the internal ener-
gy Ef of relative (A-B) motion as a continuous variable -[Y,(t) - y f D (P -_P s) Cf dEf
since the spacing between bound levels are much smaller (3 lOb)
than the thermal energy (kT) of the thermal gas bath M.
The discrete representation of Eq. (2.15) givesthe net elec. =0, i- 1, 2,N (3.10c)
trical current flowing outward from node I of a multimode which" is Kirchois current law (KCL). The balance of cur-
system as rents 'v which exits and enters any junction i within block

J. Charn. Pty.. Vol. 69, No. 1, 1 July 198
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220 M. R. Flannery: Variational prnple

f(i( iN) toalljunctions (f=N+ l,N+ 2,.,inblock the Master equation (3.10) for association is illustrated by
W ,f= 1,2,...,N in block F' and f= 0, - 1,.., - D in block Fig. 5. A time-varying current 1(t) from capacitor C, with
,Y) of the network is zero. This expresses charge consenoa- initial charge Q, (0) =; n, (0) is subdivided alog mainline
tion at junction i where there is no net buildup of density channels Re, to enter a KCL network with N nodes, corn-
(charge) n,. The aoutz (2t7) which enables the QSS con- posed entirely of resistors R,, and internal currents 1,, (t),
dition (2.12) to be satisfled by a specified distribution Plat and is then reconstituted at C2 via mainline exit chanelsR,.
all times provides the separation in Eqs. (3.3), (3.5), and
(3.10b).

Under KCL or QSS, the voltages Ps satisfy B. , of IW ds
P " C, dE,= 0C Pf dEf (3.11) The network of resistanceR , Rcf, R, and Rf may

f 0 now be replaced by an equivalent resistance R with through-
The time-dependent W and J' blocks ofstates am anal. put current 1(t) determined from the power loss

ogous to capacitors connected in parallel with their positive
plates chiarged to r(t)2,R (t) - r (t) I1(t) (3.21)

Q, (t)- , (t) n, (,)d, (3.12) = It, (3.22)

and to be

02(t) =,vn,(I) n, (tdE,, (3.13) 1(t)= [am (t - r.(t)

at time tand held at voltages Xf-dEf' (pSp2CvdE, (3.23)
V ,( O = W '€(t) (3.14 ) f) d " .

and The summations include external junctions

2(1) =,(t) (3.15) C(n=N + I,N+2,..., ao)andS(n= -D, -D+ 1,...,0)

above their negative plates. Since Q C V, their capaci- at the source and sink capacitors and the internal junctions
tances (n = 1,2,...,N). By comparison with Eq. (2.20), the associ-

ation rate R A(t) may now be identified with the electrical
C,1 ' F1= , idE, (3.16) current () of Eq. (3.23), and the rate constant identified

with
and

oa fNfdE, f (P -P,)C,,dE,, (3.24)
C2 = hiJ ,dE, (3.17)

are constant. The external capacitor C, sae is connected to the effective conductivity R -, of the network, or with the

internal KCL node f (or energy level) by equivalent resis- time-dependent electrical current l(t), Eq. (3.23), per unit
1 - l--L -f CcfdE, = c1 (3.18)

and directly to the external capacitor C2 Y . by a resistance
Ac given by

I . o I
Rc . +, .i R ,,( - T .4

5 -

of dE, ff:CtdE, - C. . (3.19)

Each internal KCL node i of block W' is coupled to inter-
nal nodefby A,, and externally coupled to C2 via R, given . to
by

CV dh. -C. (3.20)

The above resistances Rq, R,, and R(cs are equivalent
to a parallel network of resWtances R , connecting, respec- Ito
tively, all statesC(i= N+ L..., oo) ofblock e to the speci- e I

fied W-block state f each 9-bock state J to all states ,

S(f'0,- I....-D) of block.. andallstatesC to all states
S. rpeively . The eectrical network . ich corepods to PIG.. (R,C) electical diagram anailogus to termolecular recombination.
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voltage drop f (t) - y, (t). When the KCL condition Resulti:lThe current which exits KCL node n along all

(3.11) is used directly in Eq. (3.24) then the previous results the internal resistor R, and external resistor R,, of Fig. 5.
(2.25) are obtained, is

The power loss i+ p8 -p7) C,=. (3.28)
12(t),R . f[r, M -. r, Mt I ft A(t)>O (3.25)It A X PCV-(28

is-always positie. The present variational principle (VP) The total current exiting from all N-KCL nodes is then

assertsthatPs, the voltage drop in units of (y,- ,),.areso N IV. + fi I _s)C.*inCsIPffdEf 3.9
distributed that the rate RA(t)--the electrical current I -. s (1 g (329)
l(M---s a minimum. When r,€ Mt > y, (t), i.e., association1(t-is miimu. Wen ~()>rt),i*C, 850C*tIil which when combined with the d-Y direct current,

occurs at positive rate R A(t), then VP implies that the pow- io wc o ields

er (3.25) dissipated by (A-B) and absorbed by the gasMis = Ccs yields

least. When RA is negative, the net direction is dissociation k h, = f" CcP p  gdE, (3.30)
which occurs at rate R °(t) = - R -(t) when , < r,, then
VP implies that the power provided to AB by the gas M is in agreement with Eq. (2.25c). The KCL law,
least. 1. = i + - i; = 0, Eq. (3.10) applied to nodes n = 1,2,...,V

This principle of least dissipation is basic in many fields, not only confirms the QSS condition (2.25) but also de-
e.g., thermodynamics, heat conduction, fluid mechanics. mands equality of Eqs. (3.27) and (3.30), which provides
The principle for heat conduction was derived explicitly by macroscopic detailed balance.
Onsager.' 3 For a current Ientering a KVL and a KCL elec- Result III: From Fig. 5, the total mainline entrance cur-
trical network viaRc andexitingviaR.,, the currents with- rent to nodes below a designated KCL node NO:
in the KCL network are so distributed that the summed rate N. -a
ofdissipationofenergyin theA,,R, A,, andR,,sresistorsisa i; (<N*)= i - CC PsdEf, (3.31)
minimm-Joule's law. With this law, Bates7 postulated . . J- f

that a minimum would exist in the measure ., Eq. (1.3) of where the junction N * is associated with energy level - E.
the restoration rate of thermodynamic equilibrium by re- The internal and mainlineexit currents from nodes aboveN
combination in highly nonequilibrium systems [when sum to
&,y, and y, = Pi in Eq. (2.17) so that explicit time de- N (-* 'w N N

pendences can be ignoredS]. Mendai then noted that the i+ (>Nf) =i .)ic

distributions n, associated with this minimum satisfy the (3.32)
QSS condition (1.4). From Eq. (3.23) it follows that this
unnormalized time-independent measure A? may now be =-0f dEf (Ps-P)C,,dE, (3.33)
uniquely identified as the rate 2aNA N9 so that the mini- D

mum of A yields the minimum rate (2.25a) directly, with- which reduces to
out the further need for substituting the final variational .o

function PD = 1 - P, in expression (2.23) for the current i -- dE, -(P-PS) CdE,. (3.34)
(2.25a) or in Eq. (1.5).

The present assertion that the rates (2.2) and (2.5) are Since i, = i.- for each KCL node the total current

extremum implies a principle of least dissipation for chemi- (i + i; ) in units of [y,(t) - r,(t) ] is
cal reactions. The rates (t ) tend naturally to zeroa N = (7 -d

when thermodynamic equilibrium is obtained for the com- f- f f s (3.35)

plete system. This is analogous to the electrical current I in agreement with Eqs. (2.23) and (2.25).
decaying to zero when the voltages across the capacitors C, Result IV When C, with charge Q (t) gains a charge
and C2 connected in series across R become equal. dQI and C2 with charge Q2(t) gains a charge dQ2 on their

C. Use of daWan positive plates within time dt, the sum of the total electro-

Various QSS results may be deduced rather readily from static energy ( VgdQ, + V2dQ2 ) gained by thecapacitors and

consideration of the electrical diagram (Fig. 5). the thermal energy (3.21) radiated must be zero. Since the

Result I: The mainline entrance current along R,, and charge
entering KCL node n is q, =n,(t) =n,(0), i= 1,2,...,N (3.36)

i. = P! Cc, (3.26) at each junction i of the Njunction KCL network remains

in units of (y, - y,). The total mainline current which en- constant then the total charge distributed among the capaci-

ters all N nodes of KCL block i and node n = 0 of block.3; tors of initial charges Q0 and Q2 is

from block W is Q1(t) + Q2(t) = Q10 + Q20  (3.37)

a TV TV - ,..Y P sSJP (3.27) and the discharging/charging current is

I 1CIq .= q . (3.38)
which is the association rate RA(t) in units of dt dt.
[} (t)-r, (t) I in agreement with Eq. (2.25b). Hence the power equation is
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(VI- 2)lo rJ+ I 2R = (3.39) WV.SUMMARY
( , - ) d i  A variational principle based on the search for a mini-

which also follows from application of KVL, Eq. (3.9), to mum to the net rate R A(t) for association with respect to
the (C1 ,R,C 2) circuit at time t. Hence variation of the stabilization probabilities Ps has been pro-

R A(t d (t) = dQ2(t posed. It is capable (Sec. II B) of providing probabilities Ps

dt d t and rate coefficients a identical with those determined from
direct QSS solutions of the Master equation. In this sense the

= [Q1(t)CJ - Q2(t)C2] (3.40) developed expression (2.21) provides a variational expres-
R sion for the QSS approximation. Good trial representations

which is the analog of Eq. (2.20) with (Sec. II B) for PSexhibit a maximum in IdPs/dEI nearthe
R -1 =akaA *,, Y. = Q,(t)/C,, and y, = Q2(t)/C 2. The location E?* of a physical bottleneck.
equation is linear (rather than quadratic) in Q, since Eq. By introduction of the additional block F of highly ex-
(2.7) renders the basic equation (2.2) linear in the (pair) cited levels i sandwiched between the reactant and product
distribution (3.12) of dissociated species AB. The solution zones W and ?, respectively, and characterized by forward
of Eq. (3.40) subject to C, being initially uncharged and reverse (variational) probabilities P1 and P1, respec-

(Q 10 =0) is tively, the present variational method is more detailed and

QI(t) = Q2o(C/C 2)[1 - exp - t/RC] complete than the least-upper-bound variational method of
Wigner' and Keck' which ignores this block.

(C, C Q2 0 (3.41) The minimum with respect to variation in n, of function
(Cl + C2) (1.3) postulated by Bates7 via analoy with an electrical

and network is identified here with 2aNA N, so that the supple-

Q2(t)= Q2o[1 - (C/C,) (I - exp - t/RC)] mentary explicit calculation of the rate (1.5) is not required.
Electrical diagrams (as Fig. 5) may be utilized very effec-

C2 Q2o, (3.42) tively not only to analyze (Sec. Il C) the detailed dynamics

(Cl + C2 ) of termolecular processes but also to facilitate the ready con-

where C is CCz/(C + C2). As t- co, the voltages across struction of various simplified approximate schemes.'4

each pair of plates, y. = QI/C and r, = Q2 /C 2 are equal
(and opposite), no current flows and charging is complete
(corresponding to thermodynamic equilibrium). When C, ACKNOWLEDGMENT
has infinite capacity for absorbing charge, i.e., when C, • C2  This research is supported by the U. S. Air Force Office
then C-- C2 so that of Scientific Research under Grant No. AFOSR-84-0233.

Q,(0) "- Q2o( 1 - exp - t/IRC 2)  (3.43)

and

Q2(t) -Q2. exp - tRC2 , (3.44) 'E. P. Wisner, J. Chem. Phys. 5, 20 (1937).

so that the dissociation frequency k can be related to the time 2J. C. Keck. J. Chem. Phys. 32, 1035 (1960).
fS. Byron, R C. Stabler, and P. I. Bortz, Phys. Rev. Lett. 8, 376 (1962).

constant for discharging of C 2 and charging of C, by 'B. Makin and J. C. Keck, Phys. Rev. Lett. I, 281 (1963).

k = I/RC2  (3.45) 'M. R. Flannery. J. Chem. Phys. 87,6947 (1937).6M. R. Flannery and E. J. Mansky, J. Chem. Phys. 8, 4228 (1988), and
as expected (since C2 = i, and I/R =aNA Ng = k,) Refa. 1-3 therein.

This rate constant governs only the rate of approach to, but 7D. R. Bates, Proc. R. Soc. London. Ser. A 337,15 (1974).
not the magnitude of, the asymptotic limits. 'I. Mendal, J. Phys. B 12, L209 (1979).

Inot sumarye, pealothe asympto k im . 5) s 'M. R. Flannery, J. Phys. D 18, L839 (1985).
In summary, appeal to the network (Fig. 5) provides '"See, for example, G. Arfiken, MathematdalMethodsfor Physicim3rded.

results (3.27), (3.30), and (3.35) which are exact under (AemicNewYork, 1985), p. 937.
KCL condition (3.1 ). For voltages which do not satisfy "D. R. Bate& and 1. Mendal, J. Phys. B 15. 1949 (1982).
this KCL condition, then Eq. (3.24) is used for the electrical ZM. R. Flannery and E. J. Mansky (work in progress).
current in units of (y, 'L. Onsager, Phys. Rev. 37,405 (1931).

'4M. R. Flannery and E. J. Mansky, J. Chem. Phys. (to be published).
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Diffusional theory of termolecular recombination and association of atomic
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A diffusional treatment of termolecular association of atomic species A and B in a low density
gas is presented and applied to positive ion-negative ion recombination over the full range of

masses of reactants for various classes of ion-neutral interactions. In contrast to rates given by
the diffsional current, excellent results are obtained foi general mass species provided a more
basic expression for the association rate is introduced.

I. INTRODUCTION II. RATES AND CURRENT

The picture of electron-ion recombination, of termole- The distribution n, (Et) per unit interval dE, of pairs
cular positive ion-negative ion recombination, and of termo- AB with internal energy E, at time t is governed by the colli.
lecular ion-atom association: sional input-output Master equation 2 -t

A+B+M AB+M, (1.1) d n"
kd t = -f S dE

involving subsystems (A-B) associating in a thermal bath of
dilute gas M as proceeding via diffusion in energy space has - [n,(t)v-f(t)vl ]dEp (2.1)
stimulated'' a great deal of interest, in principle, valuable to ED
elucidation of the dynamics of association processes and to where - Dis the energy ofthe lowest vibrational level ofAB
many examples of decay of laser-produced plasmas, of reac- relative to the dissociation limit taken as zero energy, and
tion processes in flames, of shock wave propagation, etc. In a where vtt is the frequency per unt interval dEf for E, - Ef
classic paper on electron-ion recombination, Pitaevskii de- traneitionnsh coeiuenc between AB and M. For bound
rived a rather elegant analytical expression for the two-body tatis by col tw and M. For bndrate coeffcient a (cm 3 s') inEq. (1.1). Becase ofitin- states dn,/dt = n,/Bt, and for dissocited states dn,/dt

ratecoeficenta (ml -')in E. (. 1. Bcaue o it in (oln,/at + F, ) where F is the net flux of bontracting E,
herent simplicity over more sophisticated and therefore time pain cret where Fis then o contractin Eo
consuming procedures based on a collisional input-output pairs created with infinite separation. A basic expression for

Master equation,"' - the result has been applied to heavy- the interests of elucidation and completeness of the present

particle recombination- which proceeds three orders of discussion (in Secs. III C and IV) and of direct comparison
magnitude faster than collisional electron-ion recombina- with the diffusional quasi-steady-state approach, the key
tion' 7 for which the result was originallY intended. In spite steps therein are provided below. The first step involves writ-
of its attractive features, the diffusion picture as formulat- ing the net rate for association as 1
ed'- achieved remarkably disappointing results for heavy-
particle termolecular ion-4on recombination. -

6

Apart from recognition that diffusion methods (based R A(t) = ps (dn dE,
on a Fokker-Planck reduction of the input-output collision f . ' \ dt /
integral) are likely to be valid only when the collisional =aNA (t)Na(t) -kn,(t), (2.2)
changes in energy are small, the basic intrinsic defect for
application of the Pitaevskii expression to general mas sy- where Pis is the probability of stabilization of E, pairs by
tems remains as yet undetected. Moreover, that a much less subsequent niulticollisions with M. The effective two-body
sophisticated "bottleneck" model" originally designed also
for electron-ion recombination achieved much closer agree- concentrations NA (t) and NB(t) is a (cm- s), and k
mentl ° with the exact results of the Master equations- 1o for coenrtnsN()ad t)ia(m'-1,adk

(s-') is the frequency for dissociation of thoe tightly bound
ion-ion recombination presents a puzzle.

In this paper, the foundation of the diffusion approach pairs of concentration n, (t) which are considered to be fully

asapplied to processes (.1) will beexained andthe basic associated with energies E, within a block of,5' of low lying
defectiedpreviouseapplication will beamne ant The levels in a range - S >E, > - D within which the stabiliza-defect in previous applications will become apparent. The to rbblt si acltdt euiy

proposed theory is valid for termolecular ion-ion recombin- tion probability P b is calculated to be unity.

ation$'" and ion-atom association 14 at low gas densities and The separation between the energy levels of AB is suffi-

as a case study will be applied here to ion-ion recombination. ciently small compared to the thermal energy (kT) of the

Association at rate coefficient a (cm3 s- ') and dissociation gas bath so that the levels form a quasicontinuum. Thus,

at frequencyk (s-') inEq. (1.1) are treated in a unified way dn,(Et) J(E,), (2.3)
so that equilibrium can eventually be established. dt BE,
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6948 M. R. Flannery: Termotecular assocation

so that the upward current past level E at time t is and

Et) = dE, Sf(t)dE, (2.4) d = [, ( 
J" D dt

since J vanses at the end points ( -D,oo ) and since S

+O tO.d c -ngthenormalized distribution J-s C PfdE, -S>E,> -D, (2.13)

introdu g which illustrate quite effectively the significance of both the
y, (t) = n 1(E,t)/h, (E 1 ). (2.5) stabilization and disruption probabilities P and P .

where A, is the pair distribution under full thermodynamic From Eqs. (2.9) and (2.10),

equilibrium with the gas, the Master equation (2.1) is dn,

d r. - Y M M(.4
-n,(E,,t) - - [(t) -yf(t) 1CdEI at k aE, ) , (2.14)

where the time-independent background current downward

J,-- J (E,,t), (2.6) acrossEis
dEj

where the one-way equilibrium collisional rate -j( -E) = dEJ (Ps-Ps)DCfdEf. (2.15)

From Eq. (2.11) the time-independent macroscopic coeffi-
CV=hlvv=hf'v =CA (2.7) cientsaandk for association and dissociation in Eq. (2.2)

satisfied detailed balance. The second step is to introduce the are, therefore, given by the basic expression,
ansatz16

A(t)N9 () n, r(t) f (PN is -(P ) CfdE = kh,

y 0(t) ---- ' [ NA +s +pis] J (2.16)

and satisfy (macroscopic) detailed balance.

--P (t) + yP,(t)' 1, (2.8) The expressions (2.10) and (2.11), or equivalently Eqs.

which holds at low gas densities. The equilibrium concentra- (2.15) and (2.16) for the currentj and rate coefficient a are

tions ofA and Bare Na and . The probability that statei in general not identical unless the following additional re-

is a stabilized state, or is a destabilized state with respect to quirenistifed.

association is Ps or PI = I - Ps, respectively, and I, and
y, are the normalized distribution of pair in the fully disso- A. O ts-sdy4to (0S8)

ciated ( source ) blck ', 0<E<oo, where P is unity, and As Eqs. (2.12) and (2.13) illustrate, the distribution of
in the fully associated (sink) block, -S >E> -D, paursinblocks' and J.;' are time dependent, until fullther-
where Psis unity. Hence, the Master equation (2.6), current modynamic equilibrium is established when y., - from
(2.4), and rate (2.2) separate as6 above and below, respectively. Since dn,/dt = On/t for

dn ( the intermediate block ' of highly excited levels with energy
--= [y(t) -,(t)] E, in the range 0>E> -S then quasi-steady-state (QSS) in

block ' requires

Xf- (PE-Ps)CdE,= (2.9) dt 0, 0 E-S (2.17)

J( -E,t) = [r,(t) - y,(t)J so that the stabilization probabilities in Eq. (2.9) then rigor-

xfdE, -Es (P -PS)CcdE, ously satisfy the integral equation

(2.10) -s.

and (2.18)

R A (t) = C ( (t) - r (t) The stochastic probability for stabilization P 7 of state i
is therefore the fraction of all collisions which eventually

PSdE (P ps _ p)C dE," result in association. Under this circumstance it readily fol-
-0 -0 lows that the rate (2.11 ) reduces to

(2.11) R (t) = - ( -E,t), (2.19)

From Eq. ( 2 .9 ). the loss rates offully dissociated and of t R c (.0 a t th r coefficient

fully associated species of energy E, are, respectively, the downward current (2.10), and that the rate coefficient
dn, (t)(2.16) "is given by

dii, [(NANB = -j( - E), (2.20)

where E is an arbitrary energy level in block 6'
×J_ cP~~fE,> (212) (o>E> - S).

JfD The rate of association (2.16) may be identified with the
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current (2.15) only when the QSS-condition (2.17) for the changes in energy. Here the current J, in Eq. (2.6) can be
probabilities is satisfied.' 6 Use of Eq. (2.17) from the outset determined to fourth order, rather than to the customary
in Eq. (2.2) also illustrates this relation, second order. 2

A -(t) =f-AVA)
A. Fokker-Planck current to fourth order In energy.

= -J(-St)= -J(-E), (2.21) change moments

although the basic expression (2.16) for a cannot then be On introduction of an arbitrary but well-behaved func-
deduced. An exact expression which emphasizes the role of tion 4), (E,) whose derivatives vanish at the end points
the current Jis obtained from Eqs. (2.2) and (2.3) to give [oo, - D), then, with the aid of Eq. (2.6),

RA s 'OI (t) A PS dn,
J-D kP, dE,= J , - dE,

sJ, (t) /) ) dE,, (2.22) o (
On expanding the difference

since J, vanishes as E, - D and oo, and since P s is con-

stant (0 and I within blocks '& and Y, respectively). Only , Ef - E,) E (3.2)
when Eq. (2.10) for Iis constant over block F, i.e., when 1, 1•
QSS Eq. (2.18) is satisfied, does Eq. (2.22) reduce to Eq. as a Taylor series in energy change (E, - E), assumed
(2.19). It may be shown (work in progress) that the QSS- small, and on integration by parts with the explicit recogni-
condition (2. 18) corresponds to a minimumlg in Eq. (2.16) tion that (d R)j/(7EI) -O for n>l as E, - [, - DJ, then
fora. Any approximateP which does not rigorously satisfy Eq. (3.1) can be expressed as
Eq. (2.18) will therefore yield higher rates a. d 2 dl

TheQSS (minimum) ratecoefficientsarethereforegiv- J - , -dE - [ 1 ] -0,) d ,
en by f- t f -D E,

a. TV, ~(3.3)
--j( -E) where the current is

2 .J'(Elt) = .D-o 3E7 (3.4)

= {'dE, CvP~dEf -j(O) (2.24) in terms of the normalized distributions r, and the energy
D change moments-4

-- f f, 's DI)E) - f_ (E,_,,Cdf 35
JoD J, 4.P7 dE, ff -j( - S) k. ,. Dii-,(E,)=- (

(2.25) 
Ml _ - E

which are, in general, different from Eq. (2.16) unies the with respect to the one-way equilibrium rate for E, -E,
probabilities Pf exactly satisfy"' the QSS-condition (2.18). transitions. The number per second of all collisions with an
Note that Eq. (2.24) is the QSS rate for association that equilibrium distribution of E, pairs in unit interval dE, and
would result from the full equilibrium concentrationNNA~s unit volume is D,(01; and D Vand 2D,(" are the average
of dissociated pairs and zero population of fully associated energy change and average energy change squared per sec-
J' pairs i.e., r, = I and y., = 0 in Eq. (2.8). Similarly, Eq. ond, d (AR)Idt and d (AE 2)/dt, respectively. The ratios
(2.25) is the QSS rate for dissociation which would result Dn"/D, 0' and 2D, 12/D,0O Specify (AE, and (AE) per
from an equilibrium population *, ofassociated Y pairs and collision, respectively.
zero population of diociated pairs, i.e., r, = 0 and y, . I Evaluation of these moments can be facilitated by
in Eq. (2.8). adopting the expressions for Cf which correspond to various

The aim is now to derive a simple analytic but approxi- A-M and B-M binary interactions (symmetrical resonance
mate expresion forj( - E) by converting Eq. (2.15) from charge-transfer,3- t0 hard-sphere,'0 polarization"). They
an integral representation to a differential representation so can be collected under a universal form (work in progress).
that approximateexpressions for the probabilitiesP smaybe These moments are normalized'0 to the quantity
derived, in contrast to the exact numerical solutions of Eq. (- I- )"Tar (kT" - I NA NS where a. is the Thomson rate
(2.18). [Eq. (4.1) below1, where r is a dimensionless mass factor"

and where Tis the temperature of the gas bath.
I1. FOKKER-PLANCK REDUCTION FOR ION-40N Figures 1(a) and 1(b) illustrate the general trend of
RECOMBINATION AT LOW GAS DENItTIES these moments calculated here for the specific case' ° where

The conversion of the integral operator in Eq. (2.13) internal-energy changes in an ion pair (X +-X-) are due to
into a differential operator achieved by a Fokker-Planck symmetrical resonance charge-transfer (X ± -X) collisions
analysis'J is useful when the collision kernel C, favors small with a parent gas X. In this case, the velocity vectors of the
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FIG. 1. (a) Normalized moments D I") of energy change rate (energy^ FIG. 2. Invefses of moments (a) &2) (A) and (b) D 14) (A) as a fu n ction o
f

s- 1 ), m - 0-4, as a functon ofinternal energy N, - - A (Uk ) of tbe bound i tenal enervyE, - - AkTof the ion pair for various ion-neutral itenbc"

ion pir . (b) Avenr*W energy change and energy-4change squae tions: POL (polarization), HS (hard-sphere), CX (chaxge-transfer).
D (-,)ID ' per collision. D .. anld derivative o(D " Z. Equal-mas species and Equal mass speciesam ass umed.

chagtuu er ion-neutral colisbions mre assumed and moments an nor-malized to the quati- 1rar (kT)" - W VA N,,.

upon collision ( since D V ) < 0 ). This critical energy specifies
the location of'E * of a bottleneck where the averaged energy

(fast) ion X + and the (thermal) neutral X are inter- change vanishes and where theregion E, >E awhere excita-
changed. s Large transfers of energy are therefore involved, tion is greater is separated from the region E, < E * where
as is confirmed by D (1), the averaged energy change squared deexcitation is greater. Note also that the even moments
( AE ?) per second shown in M&g I (a). This case will there- D , ) display minima which become sharpe r w ith in c rea se of

fore provide a most stringent test of the weak-collision (dif- m, as expected, and that the minimum in Dl("=Id/
ftiio) procedure adopted heme dt (AEI) coincides with the zero of D,(') -d / dr ( E) at

As the binding eergy - E, decreases from the disso- E *, as is clearly shown in Fig. Il(b). These features are quite
ciation limit (at zero energy ), the equilibrium density h (A ) general for the various ion-neutral interac'ions and are uti-
~ IE,] -  12 exp( - E,/k) per unit interval dE, decreases lized below.

from infinity, reaches a minimum at E, = - 2.5kT and Figures 2(a) and 2(b) illustrate the variation of
then increase exponentially. 10 Since the energy change fre.  [D(2)]-1 and [ D (4) ] -1Ifrdftrn neatoso n

quency v¢r for each pai decreases rapidly with increase of B with M (charge-transfer CX, hard-sphere HS, and polar-
binding, the overall shapes ofthe equilibrium moments D,(- )  ization POL). The bottleneck to D,( ) occurs where the
in FigL I (a) and I (b) reflect the variation of the product (AE 2) rate is least and in roughly in the same location (E,
h,vf. Note that the equilibrium collisional rate D,°) isrela- - 1.25k7) for all the interactions. The (AkE') rate is great-
tively constat in the rnge (l.8-4)kTof binding. Also D,(' est for the charge-transfer interaction and weakest for the
=d Idt (AE) is positive for E, > - I.4T -f E*0, so that polarization attraction, as expected. The moment D (" ex-
these pas on average become less tightly bound upon colli- hibit&sidmilar but more rapidly varying behavior.
sion. Pairs with E, < - 1.4T become more tightly bound Since C,, is symmetrical in i and f-the detailed-balance

J. Chen. Pthya., Vol. 87, No. 12, 15 Ocme 1987

41

... ../ m m • i l I I I l i itC-s



IW

M. R. Mawy: TeoIlar associationm 6"61

relation (2.7)-then C, when expressed as a function of the terms, i.e, D, 5 3 and higher moments, to give
energy-mean E= (E +E,) and the energy change _ - 2D ' 1
A = Ef - E,, is such that Cf = Cf (E,IAI) as previously D,") =-L iD 2 ' D

noted by Keck and Carrier.2 On expanding Cy about E, in -Ej [E? J (3.11a)
terms of the expansion paraneter A, which is assumed small, and
then L, = D ( 2 ' wI (4) ( 'b)

Cf(R =E, + JA.(AJ) =Lft d n"( a c, )/ E 31b
."'0 n! \21 \aE7 ' which also ensure zero equilibriumn current. In view of Eq.

(3.6) (3.11) note that equilibrium (, =0) is obtained only when
whereC, isCr( = E,IAI). Thegeneral moments (3.5) are the current (3.4) is expanded to even order.
therefore determined from With the aid of Eq. (3.10), the nonequilibrium current

(3.4) to fourth order in moments D '" isOdd ra-,+)] J,'4)(£,,t
I (2.I.)' [at- : m odd, (3.7a)..3 [D 12) - 23 2D + 3 ', ]o'-8-E, 3 E a"Eir , -

n1)(2I)m  m even, (3.7b) ([4) "ra lr, 1 (3.12)-8E- 3 2 -'i~,J te-785. + D' . II -D (4
which involves only the terms IRE I BE3I

which is the differential representation (up to and including
F,')(E,) 4'C,(E,,jA )dEf, (3.8) the fourth-order moment D 1)) ofthe double integral

with s even. Terms with s odd vanish since D is effectively r C'
infinite (-5YeV). J(E,t) dE,J_ [r, (t) -r,,(t)]COdEf (3.13)

For equilibrium, -y, in Eq. (3.4) is unity and the equilib- -D

rium current can then be expressed, with the aid of Eq. (3.7) for the exact current (2.4). The differential form (3.12) is
as the Fokker-Planck current to fourth order since the general

, (- "/ BD Fokker-Planck expansion can be employed for any variable[r whose changes are small in comparison with averaged char--E, acteristic values, e.g., the collisional energy change A here is
.v en - assumed small relative to the thermal energy kT of the gas

=JU• ( 2 [n bath.

B', +FjJ+.+ 2) Upon use of the approximations (3.11), which are inter-
X . (3.9) nally consistent to neglect of moments higher than D ,(), Eq.

(3.12) reduces to
This new form clearly shows that the coefficient of its [ a 2D( 4 i ,

flrsttenBF;,/BEI, which aises from the leading term of J ((E,,t) - ,D BE? itDBE, )
theexpansion (3.7) forbothD ,) andaD 2 )/BE,, isidenti- .7Er2 r -,

cally zero. The coefficient of the second term d 3F}'/aE, D3 -D ', [
which is the net balance of the second term in the expansion -2- lE 2 3E?]
(3.7) forbothD V" andaD 2)/BE, and ofthe leadingterm in 3.14

the expansion (3.7) for both B2D) 2 ddan(4)d 3 (.4

is also zero. The leading nonvanisbing contribution to Eq. Inserting the ansatz (2.8) in Eq. (3.12), then Eq. (2.6)
(3.9) is [ -3 F()IdE ] whichis the net balance of the with Eq. (3.12) yields
third tem in the expansion (3.7) for bothD,'3 andBD 2)/
dE, and of the second terms in the expansion (3.7) for both dn, (E,,t),r ,,)l~alr= -an.li [r, (t) - r, (t) I ;(E, (3.15)
d 2D,(/,E and d 3D, ,ME. The consistent neglect of dt BE,
B4 (')18E - 'F E and higher-order derivatives
demands both the neglect in Eq. (3.4) of terms with n > 4 where in terms of the stochastic probability P, that state i
and the neglect in Eqs. (3.7a) and (3.7b) ofterms with n>5 dissociates, the time-independent background current to
and n > 4, respectively. Hence, the equilibrium current fourth order is

(4)4') (E, )

-WE-,-.' + 2 3 0 (3.10) D[ " a-D +3 ] P ]
, aF ,  

BE =- - , E ,  BE,

is exact to fourth order in the moments and is identically + [D ) -') ] [ J L D (4) L E,zerol Relationships between even and odd moments can be aE, it B BE 3
obtained from Eq. (3.7) by neglecting FJ() and higher (3.16)
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. Dihuslon equation and current for termoeculer (b) Rather than requiring Eq. (3.21) for the probabili-

reombsation ties J, in Eq. (3.20) can be fixed by inserting Eq. (3.20)'

On ignoring moments D I" and higher, the (diffu- directly into Eq. (2.24) forJ(O) to give

sional) current (3.16) is -j(O) = dEf CVdE+j f dE,

(2, =CSE, 
. (3.23)

-= -c-l- , (3.17) .oC, dE, I IDI {f(dED (E) . (3.23)

so that Eq. (3.15) is J-D

dn, (E,) . ! 8PD] On equating the exact currentj(O) in Eq. (3.23) with the

[rYdM - r.()J D - diffuional currentjd, then
dt E, I E,]

(3.18) _k,(O)-[f dE, CcdEf]Jl+odE,
which is a diffusion equation in energy space. The moment

D )= Ild/dt (AE 2) is the diffusion coefficient (en- f dEl dED2 ) E) '

ergy9 s- ) in energy space. This type of streaming equation X a C'r s
has been previously derived via other techniques by Pitaev_- arAN9, (3.24)
kUP for electron-ion recombination under highly nonequi- which (3.24)
librium conditions when r, > y, so that y, = P y , in Eq. which yields the expression of Kck' for a. The term in
(2.6), and by Keck and Carrier2 for heavy-particle asoci- braces, { } is simply the ratio of the downward diffu-

ation/dissociation. It has been investigated by Landon and sional current to the one-way equilibrium current across the

Keck,3 by Mahan5 , and by Bates and Zundi for highly non- dissociation neck.

equilibrium (y, ,y,) termolecular ion-ion recombination. (C) Another possibility in similar vein to (b) is to insert

By explicitly including here the factor (y, - y,) via the an- Eq. (3.20) directly into Eq. (2.25) forj( - S) to give

satz (2.8), Eqs. (3.15) and (3. 18) for all r,, help to empha- [ - S
size the evolution via termolecular recombination and disso ( - S) -- d-, f CV dE, I
ciation (into ion products) of the subsystems (A-B)
towards thermodynamic equilibrium with the gas M, at- xl1+ dB C, dEf
tained when r -r,. - l.

Another advantage of the nsatz (2.8) is that the inter- f z -,

mediate block of highly excited levels can be taken to be in X dE/D"(E) = aKNA A , (3.25)
quasi-steady-state (QSS), i.e., 8n,/Bt =0 in either Eq. (2.9) S

or (3.18),for all times. The QSS-diffiuaional current (3.17) where the term in braces, { -, is simply the ratio of the

is constant over F, so that the solution of Eq. (3.17) subject upward difthsional current across - S to the one-way equi-

to conditions, librium current upward across - S.
The feature common to all the above procedures (a)-

Pi(-S)-0, Ps(-S)--l (3.19) (c) is that the required current (3.17) depends upon the

is accuracy of the gradient (dP 7/dE,) which, due to the ne-
e 1 glect of higher derivatives in Eq. (3.16), is described by the

P °(E,) =-j dE/Di" (E) 1-PdS(E), diffision equation (3.18) less precisely than are the actual

- (3.20) diffusion QSS solutions, i.e., Eq. (3.18) may furnish accu-
rate P a but relatively inaccurate derivatives. More import

where the subscript d denotes quantities associated with the tantly, however, is that Eq. (2.20), which is valid only under
diftion equation (3.18). Various levels of approximation exact QSS-condition (2.18) of the exact Master equation
readily follow: (2.19) has been invoked for the diffusional currents] j P) of

(a) Since Eq. (3.22) andj?'k of Eq. (3.24) which are QSS solutions of

P(O)=1, P(0) =0, (3.21) the different and approximate diffusional equation (3.18).

then Eq. (3.20) yiThe QSS solution of Eq. (3.18) subject to both con-
thedq.( yeldsstraints (3.19) and (3.21) is

pJ PNa (3.22) Ps,(E,)= {f dE/D12(E) _ 1dE /D(2)(E) - 
'

for the downward difusional current which, when com- (3.27)
pared with Eq. (2.20) provides the recombination rate a, of
Pitaevski,' adopted for ion-ion recombination by Landon for the probability that any level E, in block f, once ac-

and Kek 3 and by Mahan.1 Note that the current (3.22) is cesed by collision, has "associative" character. The probe-
the inverse of the area under the curves in Fig. 2(a), and that bifity that level E, has "dissociative" character is the com-
Eq. (3.20) for the stabilization and disruption probabilities plementary function

Pi tat energy , are the respective ratios ofthe arsm which PD(E,) = dE/D12(E) dE/D' 2 CE)
correspond to the eneiV ranges (0 -E,) and (E, - S) to S(E
the total ares. (3.28)
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Thus, both functions are constrained to vary monotoni- (3.24) for a of Pitewvskii' and Keck" respectively. Little
cally between zero and unity as does the exact numerical discernable difference was found between a? and a, which
solution to the integral equation (2.18) so that, when corm- may now be simply called the diffusional rates a, obtained
pared with the exact numerical values, will involve less error when the diffusional current (3.17) is iserted in Eq. (2.20).
than their corresponding derivatives Previous results-" were based on the solution of, at most, 36

ap,.0 coupled algebraic equations, the diacretized equivalent rep-
== : {D~' (E,)}- ' 'k  (3.29) resentation of Eq. (2.18). Present calculations solve 100

aE, coupled equations required for convergence in a for small
appropriate to currents (3.22) and (3.24) in schemes (a) and large mass parameters (3.32).
and (b) above. Table I provides present values of the ratio au/a, for

the various interactions over the full range of mass param-
eteral. Small a= 10- 3 crrespond to collisional recombin-

C. Caluludlone for otrm lcularrocombnaUtonM lowN ation of heavy ions (M, =M)M,) in a much lighter (elec-
The well developed case"'2 of termolecular ion-ion re tron) gas, intermediate a( = 1/3 for M, =M2 = M3)

combination corresponds to normal mas components, and large a = 103

A +B-+M-AB+M (3.30) forM t4MM=M cstoelecton-ion recombina-
tion in an ambient gas. The cases of small and large a involve

serves as a case study for assessing the accuracy of the diffu- energy transfers which are very much less than the energy
sion approaches of Secs. III A and III B. The recombination kT of the gas so that the diffusional (weak collision) ap-
coeflicient a has previously been represented?-1 very accu- proach is likely then to be valid.
rately by the sum As Table I shows, the difisional rates are reliable, as

a=a,+a2 (3.31) expected, only for recombination in a vanishingly light gas
of coefcients a, obtained by considering separate contribu- (a = 10--) or for electron-ion recombination (a = I0) in a
tions from (A+-M) and (B--M) binary collisions (i= I generalgas, thecase for which Pitaevsii'designed his dith-
and 2, respectively). The exact numerical rates a, are ob- sional treatment. The diftsional rates are higher by between
tained by isertmg the exact numerical solution of the inte. a factor of 3-9 for intermediate a- 1. As the ion-neutral
gral equation (2.18), the QSS condition into Eq. (2.32) for interaction varies from polarization attraction to hard-
the currentj( - , ). The rates a, have been tabulated'" as sphere repulsion and then to charge-tranfer interaction, the
a function of the mas-ratio parameter- energy change in the ion-neutral collision becomes progres-

sively larger [see Fig. 2(a) and 2(b) ] so that the difusional
a, MM,/M,(M, +M,+ ,), (3.32) rates (based on weak collisions) become less accurate, as

where M, are the mues of species A +, B-, and M, i- 1,2, shown directly by the variation of entries in Table I for a
and 3, respectively and where the set (i,j) is equalto (1,2) or specified mass parameter a.
(2,1) for ( - 3) or (2 -- 3) collisions, respectively. Since Eq. (3.17) predicts zero current in both the fully

Expressions for the equilibrium rate C0f appropriate to dissociated and fully associated blocks, W and ;-, respec-
the three classes-polarization," charge-trausfer,I ° and tively, the dilbsional current (3.17) is therefore discontin-
hard-sphere' 0-- o( ion-neutral interactions have been pre- uous, zero in ,J, in V and zero in X. The diffusion rates
viously derived."" Calculations have been performed her (3.22) of Pitaevskii and (3.24) ofKeck are therefore expect-
for the exact QSS-rates a& that rise from 1-3 collisions and ed to be valid only in the limit of vanishingly small currents
for the corresponding difisional rates, (3.22) for a, and and rates a ofrecombination. This is onflrmed in Table I for

TABLE L Viram of the atio (ala.) and (a,/laZ) with ams-ratio pamew a for 1-3 collisions and
wVh theVtlm 1-3 Wtumatln pOerloia (POL), hard-opbwe (14S), and symmeutal nuanc chare-
t I, (CX). Tbeautt, ddbamiu, md boakmack ram wre as, an, ad asm, rmpectiwey.

ao/a a/a,

a POL, 31W Cxr POL HS CX

00 I.001 1.013 1.030 32.447 25.782 16.99
0.01 1.163 1.222 1.321 8.349 7.336 5.513
0.1 2.131 2.739 3.522 3.354 2.939 2.384
1/3 3.360 4.967 6.340 2.541 2.215 1.865
1.0 4.060 6.604 9.272 2.333 2.015 1.722
10A 2131 3.510 ... 3.354 2.746 ...
100.0 1.163 1.455 ... $.369 6.302 ...
000.0 LODI 1.093 ... 32.447 20.233 ...

I1a OLaMIS S. MR@ ayIfslO.4 ruMOMbiuiM 0a Vanahingly liH OW Imp a (0) isnl
m I m rawb.bol, mdw a Moiml-m iasd

"Is CZ I a impft M2.9M, - M, wd a - I impa MM, - M,.
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the limiting cases of small and large a. Then the actual rate '. -r-.
for elwto-on colisional recombination in a gas is 7 a, -. D

I0-9 cm3 s- I at STP, which is three orders of magnitude "..
less than the ratea.-0-cm s-'at STP (of. Rd. 19) for
ion-ion recombination aji-ila mass gas. 0a -

Another rean for the inadequacy of the diffuon ap- a EXAC

proach as previously applied to general-mass cases is also EXACT A

apparnt. As Figs. 3(a) and 3(b) show, the diffusion equa- a4

tion (3.18) in general furnishes fairly accurate probabilities
P~a.", Eqs. (3.29) and (3.30), but less reliable gradients / ..

in an effort to assess the relative importance between 0 , __ ,___ I - - -,

using relatively accurate distributions P within the integral 1 2 1 3 4

(2.23) or dierential (3.17) forms of the collision integral of 1-E/hrl

the Master equation, assume that the intermediate block V as
between blocks and J' is absent, i.e., MW

0, - E <E, < ao 0., .. .... U,,OI,

p ( ) I, --D <E,< - E ' 0.33)/•

where -Eis some bound energy level. The current (2.15) w

then reduces to OL2 EX

-jD( -E) =f dE, C,, dE,

= a,, (E)NAN., (3.34)

which is the one-way equilibrium downward current across 0 1 3 4

level - E. As - E is varied, this current achieves a mini.
mums0 at energy -E (= - 2kT) which therefore actsa FIG. 3. (a) Probabiliies P' for stahlzaduma and dinociation aan ion

a bottleneck'1 to the recombination which proceeds at rate pair bound with enerw E, = - AkT Equal.mam species and charge-
am (E 0). The ratio ofag at the bottleneckE to the exact transfer ion-neumtral collion are aumd. ---: Exact QSS solution of Fq.

numerical rate as is displayed in Table I for the various (2.18). -DiffaionaI aproximauce, Eq. (3.27) and (3.28). (b) De-rivatives N P S dA ) ot abiization probabilt P S From numraical solu-interactions. The bottleneck method fails quite markedly for nvatwe. (./d) omdahuito prob a om so.2 -

small and large mass parameters a, where the difsion cur-o

rent is by contrast uccessful, and becomes much more reli-
able than the diffusion approach at intermediate a( = 1). For
a given a, less error is involved for stroner collisions in bar- iterative prcedure4
mony with Eq. (3.34) being a strong collision aproma-
ton. Since . ( 3.33) ames the least possible knowledge)C dEf
of the probabilities Pf(subject to the constraints) but an E D E
integral form (3.34) to the collision rate, it follows that fairly (3.37)

accurate distributions are required at small and large a to the solution of the integral equation (2.18) can be devel-
where the collision rate and dynamics are weak, so that the oped by using the diffusional analytical probabilities (3.27)
discontinuous integral form (2.23) does reduce indeed to as the starting (n = 0) solution. It is found here that conver-
the continuous streaming form (3.17). For intermediate a gence to within 1% of the exact solution can be in general
when the energy changes are certainly not weak, inclusion of achieved after five iterations, so that accurate rates can then
the integral form (2.22) is apparently more important than be determined from Eqs. (2.23)-(2.25) since the QSS-con-
the use of fairly accurate distributions (which in any event dition (2.18) is satisfied.
are constrained to vary between unity and zero at the boun- Since the diffusional probabilities (3.27) and (3.28) are
daries of block W). Note also that the diffusional and bott- reasonably accurate, a second possibility is to insert them
leneck results are always greater than the exact QSS rates, in directly into the current (2.23). This procedure, at first sight
accord with predictions of the variational principle recently attractive, is however inconsistent, in that the diffsional
proposeaI The bottleneck method provides the least of the probabilities while satisfying quasi-steady-state (QSS) of
one-way equilibrium rates-the least upper limit-across a the diffsional equation (3.18) in block F, do not satisfy the
bound level. The diffsion method incorporates the effect of condition (2.18) for QSS of the Master equation (2.9) on
the net downward-upward collisional transitions. which Eq. (2.23) relies. The resulting current (2.15) will

The closeness exhibited in Fig. 3 (a) between the diffa- therefore not be a constant in block U'. This is demonstrated
sional probabilities, (3.27) and (3.28), and the exact nu- by Fig. 4 which compares the exact downward current
merical probabilities may be utilized in two wayL Firs, an -J,(E,) pat level E, obtained from the solution of Eq.
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(-E/kfl FIG. 5. Noemaized raw Ar1 Eq. (4.2), foer ma-ion rcombina a. in a
dilute ps n a fuactioa of mm pamw a, Eq. (3.32) fbr variosm ie-FIG. 4. Compmaim of currens, E. (2.15), st eerg leve neutral inlactiem: HS (huardbm), CX (clarp-srauder) and FOL

- - - AkT, obmeid (-) from euacs solutmio of Eq. (2. 18) ad from (Pliaztio). -: exact ratm 0. A- rats obiuim wia dithMaic
(---) diIMW= p bai aid Eq. (3.27). Equal-mam speces and hard. probsiti Eq. (3.27),inboiceq. (2.16) for HS, CX. mdPOLinterac.
apew ion-OAlrtgmJ WW wo~e a wm asud ThV current is normalized to naea.
(UaTr& ) whm a is the Thonna, raze. Eq. (4.1).

(2.18) in Eq. (2.23) with the approximate downward cur. 5Cting P,, the diftsionl (approximate) probabilities
rent -jA(E) obtained by-inserting Eq. (3.27) in Eq. (3.27) into the basic expression (2.16) which does not rely
(2.23). The dibsion current through the bound levels is on the use of exact (QSS) Ps. Figure 5 displays a compari-
far from constant over the block V of highly excited levels son of the corresponding ratios,
and hence, Eq. (2.20) cannot be used for steady-state rates. RT = (M 1/M 1 )( aWa), (4.2)
The figure also shows that assignment ofa boud level, for where a is taken as the exact rate a, or the approximate rate
determination of a from Eq. (2.23) is uncertain. Since the aA, which arises from 1-3 collisions. The exact rates repro-
current( - E) exhibits a very rapid variation in the neigh- duce those previously pr j lented.'" The present study
borhood ofthe disociation limit (at zero energy), use of Eq. adopts a lmpoint quadrure: throughout, rather than 36
(2.24) forf(0) is therefore a risky procedure, the exact value and 18 used in Refs. 10 and 11, respectively, in order to
of J(O) being - 0% higher than the approximate J(0). o ve c s a ra.
Some defense can be aude by calculating Eq. (2.23) a obi en t a e en t a a is obtained0olncmmy - - 2kTwere the diftsional and ex. vrxe~ gemn ewe ,ada sotie
bottleneckergy T h we e nd e ovethe full range of the mass parametera, Eq. (3.32) fora,act currents agree. Thi adopt&o i however not firmly all the way, from a= 10 - for association of heavy ito in a

light (electron) gas, to intermediate a= 1/3 for equal massThe besic reason for the inconsistency of using the diff- species and up to large a= 103 which corresponds to elec-
sional probablities (3.27) in Eq (2.23) is not that the difu.- tron-on recombination in a gs As expected greatest de.
sional probabilities are not suflciently accurate for use/d partures occur for the cas of equal mas which involves the
application, but is that the expression (2.23) based on identi. largest energy transer so that the dnional probabilities
fying the association rate with the current is not appropriate would also show their greatest departure from the exact
for the = oapproximate probabilitie, which do not sati probabilities as in Fig. 3(a). For this case (a = 1/3), the
the basic condition (2.18) for such identification. difusiom result corresponding to hard-sphere collisions,

VBASIC RATE WIH Pwhich in turn involve largest energy transers (cf. Fig. 2),
exhibit the largest of small departures. The present diffu-

The exact rates a, obtained in Sec. III C from Eq. sional treatment is also excellent over all of the various
(2. 18) in Eq (2.23) for the various ion-neutral interactions classes of 1-3 interaction considered.
m lize"'1m to t corresponding Thomson rate

ar - r(R./#)3(3kT/M,2 ) 'o2 ,N, P-=3/2, (4.1) V. ION-ATOM ASSOCIATION AT LOW GAS DENSITIES
where R. isthe naturd unit (e/k") for Coulombic attrac. T above theory may now be suitably modified to cover
tion between the ions I and 2. The integral cross section 0o ton-atom association
for1-3 det colionsat relative energy (#7) is tamin A + MIaD M(51forI- / o mm"t fie ( i teenin A+ + 8 + Mv&AB + + M (5.1)
Eq. (4.1) tobe o2, 2r(pR,/3)1"2, and off, respectively for k

symmetrical resonance charge-trander collisions with cross of atomic species A+ and B in a low density gas M. In con-
secin e', for p iation (orttinl) colliiom in terms of trUt to ion-ion recombination (3.30) where an equilibrium
the poam oft l l i- distribution over internal angular momentum L, is estab-
51as with co section Of. "j

12 the A -D attraction can support centrifugal bar-
Appromate rates a, may now be determined by in. rim so that nonequilibrium distributions n, (E,,L ,;t) over

J. ChM Pft. Vol. 57, No. 1, 15 D0enber 1967
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both E, and L I must be acknowledged. Thus, the ansatz appropriate to the original Master equation (2.9). Since the

(2.8) is replaced by diffusional probabilities do not satisfy this condition, the dif-
n, (E,.L ;t) fusioual current in general, may not be identified with the

=,LP n, L ; ) 0 (E,L I)Y, (t) rate a. As Table I shows, the resulting diffsional rates
f (E,,L i) (3.22)-(3.25), are therefore not reliable2' 6 except for those

+ y. (tcases in which the current is relatively small, i.e., for colli-
+ P (E ,L , t ) p ,(t) -f l, (5.2) sion electron-ion recombination 'in a gas and for ion-ion

where p~ = 1- P, the probability of stabilization of recombination in a vanishingly light gas.
(E,,L ,) pairs by subsequent multicollisions, is zero for dis- A new expression (2.11) or (2.16) derived'6 for the
sociated pairs and unity for fully associated pairs. rates, is more appropriate for use under general conditions,

Bates and McKibbin" found that a delta function ap as when QSS is not satisfied. When QSS is satisfied, Eq.
proximation 6(L - L ) for (E,,L -E,L) transitions (2.16) reducestothecurrent (2.23).TheQSSratesaremin-
was quite satisfactory. The above analysis in Secs. III Aand imum (Ref. 18 and work in progress). The rate (2.16) is
III B for energy change alone can then be immediately modi- required when approximate probabilities are used, as here.
fled to yield corresponding results for the stabilization prob- The diffusional probabilities can also be used in an itera-
abilities Ps(E£,L ,) for quasibound and bound states. Thus. tive solution4 of the QSS-condition (2.18) to provide highly
the diffusion approximation for the bound and quasibond accurate probabilities (to within 1%) after a few iterations
level yields and hence accurate QSS-rates (2.23)-(2.25).

pS(E,.L ) - IdE/D2(EL 2) Application of the diffusional equation (3.18) to gen-
E 1 ,' eral systems represents an accurate procedure provided the

ru, / l(EL2) (5.3) solutions P s" are inserted in the appropriate and more basic
X / D , (.3 expression (2.16) for the rate, rather than into the derived

2) -s expressions (3.17) or (2.13) for the diffusional or exact cur-
where U, (L I) is the energy at the top of the centrifugal rents. Excellent agreement with the exact numerical QSS
barrier of the effective interaction results for various classes of ion-neutral interactions over

Vi(R) = V(R) +L 2/2mR 2. (5.4) the full range of man parameters for general systems.has

In term of C4 the one way equilibrium rate per unit been obtained.
I d, o 2f or . L the on) wa eqi libri l r t runsit Finally, generalization (Sec. V) of the above analysis

dEi, dL 3 dE dL for (E,,L -E L ) collisional tran Secs. 1and IIItocoverthedistributionsn(E,,L 2,t) of A-Btions, the difuion oefficient is pairs over their internal energy E and angular momentum

D12 (, f (E- E,)2 dEy L, is straightforward. The resulting equations are appropri-
2 f D J ) - 2d- ate to consideration of ion-atom association of atomic spe-

CLIC cies in a gas.f C (E,L 2 ., 'L 2)dL ' ;E f f (5.5)

where/L is the maximum angular momentum for fixed A'. ACKNOWLEDGMENT
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Termolecular recombination: Coupled nearest-neighbor limit and uncoupled
Intermediate levels limit
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Two extreme limits of collisional coupling in termolecular recombination are investipted. The
coupled nearest neighbor (CNN) limit includes only couplings between neighboring excited
energy levels of the associating species ABO, while the uncoupled intermediate levels (UIL)
limit includes only couplings between the fully dissociated reactants A' and B- and each of
the (assumed uncoupled) excited levels of ABO, which are then coupled to the fully associated
products AB. Comparison is made with results of previous exact and difbsion treatments.

1. INTROoDuCTIOM models prompted by consdering the analogous electrical
Analogy with a mathematically equivalent electrical diagram (Fig. l)are investigated. So as to emphasize the

network provides an effective framework whereby not only importance of eolisioam couplings between many excited

can the complicated multilevel collisional dynamics intrin- levels in a realistic treatmet of proem (in), two e
sicto mste eqaton retmet otemolculr ecobi- limits will be testoe The ompled neat-neighbr linut in-

sic to a master equation treatment oftermolecular r'combn- cludes only the coupling of a given excited level n with its
ation lower neighboring level n - 1. The limit of uncoupled inter-

A4 + B- + M-.AB + M (. ) mediate leveL includes only couplings from the (external)
source block Wd of fully dissociated states of the reactants

between atomic species A+ and 8- in a gas M be analyzed in A+ and 1- to each of the excited levels n assumed to be
a different light'- but also physically appealing models may uncoupled within the (internal) block ' and then the cou-
be readily constructed. In previous reporm," the (exact) pling from each of these uncoupled n to the (external) sink
quasi-steady-state (QSS) master equation method,3 the cor- block Y of fully associated levels of the products AB (cf.
responding variational method,2 and an approximate difu- Fig. 1). The "intermedlat' levels comprise block V which
sional method4 were considered. In this paper, two simple is intermediate between blocks W and 9.

04# C, I(t) - I(4

04(tM FIG.1. (R.C) E lacu a (Re.2)
appropOate to analym of temnoecular re-

S .excited leveb (n. 1,2,3,4).

I Ct

I (I
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M. R. Flanery aid E. J. Mwak. Tormoscuiar recwrban4n067

IL COM IRUCTION across any abitray level of eergy - E in block W. Two

Termolecular recombination (1.1) may be described4  extreme limits may now be constructed.

via a tinw-idqendmnt treatment wherein equilibrium con- (A) Uncoupled intermediam lowkL (UIL) limit: When

centrations RA and 17 of the fully dissociated atomic ape- the mainli entrance and exit channels of resistances R

cie A and Bwith relatA energies E, in the range 0.E, 4a and Rs defined in terms of collisional couplings by

the reactant V block, are associated (a) by direct collision s dEt -4.
into the product block Y of fuily associated molecular levels A C, dE, (2.4)

in the range - S>E, > - D maintained at zero populatio and

and (b) by a series of indirect transitions via the intrmedi S
atenergyblock V (O;PE,> -$) ofhighly excited levels. R 'JC., dE/ C., (2.5)
The indirect mechanism W -V W-.,- is the most impor-

tant 4 at thermal energies since the rate of the large energy respectively, are only included in the network for indirect

transfers involved with direct Wi -. Y transitions is vanish- passage between the reactant and product blocks W and Y

ingly small. by comparison. The lowest energy level ofAB is via junction x, the current , flowing past any of the uncou-

- D, relative to the dissociated limit at zero energy, and pled junctions n is given by

- Si a bound level below which the probability P ofcolli- I. [ Rc. + R.s ] 1, (2.6)
sional stabilization of pairs in level E, is by definition unity. since the voltage drop (W -Y ) is unity and since n is not
The two key quantities are Ps which is unknown and the coupled to any other junction n' of intermediate block V.
one-way equilibrium rate Cf which is given3 in terms of the direct (le - Y) current
equilibrium numbe density of F, of levels of energy E, per
unitinterval dEt and the frequency v, for E,-.E trai- -° E 0 A &" JoCvdE,(..f -10 d, C, d~f(2.7)
tions per unit interval dE, by A, vf.

A hierarchy of approximate schemes are apparent via is normally negligible but can be given by expression (2.6)
consideration2 of process (1.1) in terms of the analogous sinceRfs vanish for all nodesfinblock.Y. The voltage drop
electrical diagram displayed in Fig. 1. Here N discrete junc- between junctions C and each isolated n is then
dow (f-block. levels) n are at time-independent potentials C,
Pf below the V block junctions C, all maintained at unit Ps. =.Rc.= , (2.8)
equipotential (due to the assumed equilibrium ooncentra- Cc. + C.,

tions of A and B), or equivalently are at potentials to be used in the basic power expression (2.1) for therate
P! -1 - Ps abow the zero potential ofthe Y blockjunc- constant.
tionS (due to assumed zer concetration ofAB). In term Although expression (2.8) violates the KCL condition
ofthesevoltageandoftheconductancesC 0 =,R If 'ofeach (2.2) required for reduction of Eq. (2.1) toEq. (2.3), the
element of resistanceRv, the rate constant deduced2 fro QSS rate (2.3a) nonetheless provides the rate
the power equation is then the effective conductance R - Iof ro
themathematicallYlequivalent networlL Itfollowsfromcon. a1(0)NANB. =f [ Ce+C,]) (2.9a)
sideration of the power Ios in the circuit that2 Ccf+Cs)(

a AE - f dE, f (pS _ pS)2CdER-, =[f adE]i4 ,N, (2.9b)

(2.1) which has several exemplary feature. This rate is also the
Since the overall voltage drop is unity in the time-inde- effective conductance obtained from the total electrical cur-

pendent treatment, Eq. (2.1) is also the throughput electri- rent y.. o I. flowing between nodes C and S maintained at
cal current. Only when the N nodes i in block V obey the unit potential difference. Although invalid when compared

Kirchoffcurrent law, (KCL),or the following quasi-steady- to Eq. (2.8) in Eq. (2.1), expression (2.9) illustrates quite
state (QSS) equivalent condition for excited pairs: effectively (a) that the partial rate a1 of a reaction which

S f-_Cy .ff_f C~sproceeds via the series sequence e -fandf- '; of transi-

S d(2.2) tions is given by the conductance

does Pq. (2.1) reduce to -j(0), the energy-space current C,=Rj 1[Rc'+=R/s]-= CcfCs (2.10)
4X(oo-' d C1P-dr iO u oi.CC/ + C/

a()NANA = "dE, Cu.P dE, = -j(O) due to iesistances Rcf and R1s connected in series and (b)
- (2.3a) that theoverall ratea, ofthe reaction which proceeds via the

across the dissociation limit at zero internal energy, or in Parallel sequence involving each f is given by the conduc-

general to tace

N N

- E), (2.3b) of the effective network with resistances R(f= 1,2.N)

the constant energypace downward current -J( - E), connected in parallel. The resistance, Ro = Rcs, of the if-

J. Owan. RIM VOL . NO. 7,1 October IN
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YV direct connection is included in Eq. (2.11). Expressions species (a - J) for A'-M collisions unde polarization at-
(2.9) provide illustrations of the theorem due to Bates.'1 The traction (POL), are quite repreentative of other cames
approximate QSS rate a,( - E) as a function of W block Closer agreement of CNN with the exac results indicates
energy - 8 is obtained by inserting Eq. (2.8) in Eq. (2.3b). that association tends to proee via a sequence of small
The firs rate under test J given by the probability (2.8) energy-changing transitions down the ladder of intemedi-
inserted in the power expression (2.i). ate levels n, as expected, rather than via the indirect

(B) Catipied neatm-neighbor (CNN) limit: When re- ('d'-n - ) larger energy-changing transitions of UXL,
sistrs A... - arwe only included in block W, the throughput which involves each intermediate level n presumed uncou-
current I is given by pled from one another. Moreover, both approximations ap-

[r N per robust with respect both to the number N ( =36 and
I [ + RNA 1 (2.12) 72) of intermediate levels n adopted in block VWand to the

consequent decrease In spacing between the levels. The N
where junctions in block Y are again denoted by n 0. As pivots and spacings are selected by the highly accurate meth-
the highest excited bound level N- co, A cvanishes, and od prescribed in Rcf. 6.
the voltage drop between junctions C andfis then Sinc both approximations CNN and UIL are seen to

-"M satisf the correct constraints (2. 15), the overall agreement
-' in Fig. 2(a) may however mask certain deficiencies. A more
I sensitive quantity of greater significance to recombination is

= C~, C-'. (2.13) the gradient (dP~/dR1 ), since in the limit of small energy
RYE' trasfrs the energy-space current (2.3b) across Ir block

which, whnisrted in the power equation (2. 1) yields the level - E reduces4 to the diffbsional current
second rate under investigation. A simplified rate given by
the effective conductanc (or electrical current) in Eq.
(2.12) is 1.0.

which again illustrates the reaction-in-series principle of
Bates.' The approximation (2.14) has been previously ob-
tained for (&-A*) + e recombination.' In contrast to Eq. !S
(2.9),the result (2.14) cannot be obtined ftom the energy- 10 I~
space current (2.3a) since connections between C and the OAL
various x are ignored. K '

Note that the key approximations CNN, Eq. (2.13), oz
and UIEq. (2.8), satisf the correct boundary conditions

PS(E, M.0) M.0, 0
PR(E,=-. -S) .i (2.15) RA

for the probability Ps.

As a tast of the above aipprO411matiomG the case Of termo- /
leCuar Won recoWNitin (1.1) is adopted since the as- OA

sociaton (exact) rate as has boo wen studied (cf. Rd. 3) VEACT
Over NU variaion of the mms parameter 03

MA WA +MIS+ M,) (3.1) 81
pertnMt to A*-M coffimlams ad ova the folowing model-A
(A-M) intractionw- symmetrical resonance charge tnans- 0.1 cm

far (CX), POlaRiztIOG attIaction (POL)L ad harod-sphere /I
r"0010im (HS). TINOMamSOf, , and MareM(,,MAi., - .i . . . . . *sad Ms,, respetvely.

The0 approzltuw proibilte labNe UM a=d CNN X -4/T

arecalculitted fmtbellwm (2.8) for ump'sai' age
aw evels anid th limit (2.13) for ouldnau-egbu

re &ciey Thyar domaed fPt.2(a)wf F __ O. 2. (an) SetiMftieWcAivbldes (voltae drop) nfmdnb
101014-11110 QSS)sohn o4 (2).ift..uw( - /T):MXCT [4q (=]); CNN (Eq. (2.13)1; mdUILquaa-.tmdyuas (QS) oluionc(E. (.2)The resuls (Eq4 (U.)1I with 72 Vivet (We scurve) and 36pivou (Iowrcuve). (b)

Which petain to termoeula recombimatln of equal -n Cwapeadhgdauv.
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-d (1. 3(b) which illustrate the quite different shapes for the varia.
M (- E) D 1 [dE, 3.2) tionswithEof -j( - E), the downward energy-space cur-

[ IE rent (2.3b), obtained from both approximations. The cur-
where the second-order energy-change moment i rents (2.3b) are normalized to the exact QSS rate calculated

D ) f =from the numerical solution of Eq. (2.2) in Eq. (2.3b). Al.

D '1 (E2) = f(E - E )C • (3.3) though ae is then by definition, constant with respect to E

The gradients shown in Fig. 2(b) are therefore expected to variation, the E variation of the rate (2.3b) with the approxi-

provide more reliable indicators of the extent of expected mate probabilities (2.8) and (2.13) indicates the severe

agreement between the corresponding rates. breakdown of QSS, due to the differences displayed in Figs.

This sensitivity is indeed confirmed in Figs. 3(a) and 2(a) and 2(b). The following points may now be noted.
First, assigning the rate either at the dissociation limit

.s...E = 0 (the W- ' interface) orat the lower association limit
(a) UIL - S (the $'-, interface) represents a highly inaccurate

i.0 procedure for the case of non-QSS probabilities, as previous-
. % ly noted4 for the diffluional results. Choosing the rate at

- 2kTbelow the dissociation limit yields the exact QSS rate
,.5 for both approximations, a coincidence mainly due to the

agreement in Fig. 2(b) of the derivatives (dpS/dE,) at

.0 E, - -- 2kT.
Second, the different shape of Fig. 3 (a) from that in Fig.

3 (b) can be explained with the aid of Fig. 2(b). From Eq.
(3.2), the ratio of the downward energy-space current to the

POL exact rate is

°o ...o.Ji-- )(E,)lan= , (3.4)(-E/kT) I t----E

where A and E label approximate and exact quantities, re-

spectively. AsA= - Ei/kTincreases to 2, Fig. 3(c) shows
(bCN /that the ratio (3.4) increases to unity for both CNN and

4. PO--.4 ' UIL. With further increase ofA, the CNN ratio continues to

HS /increase while the UIL ratio increases until A approaches
3. H-3.5 and then falls below unity past A -7. The different

shapes in Figs. 3(a) and 3(b) are a direct reflection of the
2- variation for each approximation of the ratio (3.4) and con-

cx firms the physical importance and significance of the gradi-
ents (dPf/dE).

In spite of its attractive illustrative features, the UIL
energy current (2.9) yields rates which are much smaller

0 , than aE by factors ranging from - lO to - lO4 asthemass
°o s II  'parameteraofEq. (3.1) varies from (1/3) forequal masses

to 10±1. The simplified CNN result (2.14) varies from a
4.factor of 3 higher for a = 10-2, to a factor of l0 smaller at

Ic) a = 1/3, to a factor of 17 higher at a = 103, the limit for e-ion
recombination in a gas.

3 UIL As previously noted, the power expression (2. 1 ), rather
than Eq. (2.3), must be used when approximate (non-QSS)
probabilities as Eq. (2.8) and (2.13) are adopted. Since the

2N QSS probabilities provided' a minimum as to Eq. (2.1), all
other approximate rates must be higher than aE. This is

CNN indeed confirmed by Figs. 4(a) and 4(b), which also show
1 \...-• that the CNN rates are much closer to as than the UIL

.. .- - rates, as expected from the closer gradients in Fig. 2 (b). The

- . maximum deviation occurs at a = 1/3 where the CNN rates
0 1 a 3 are only - 25% higher than the exact QSS rates a E. All of

A (- ./kT) the rates are normalized to the Thomson rate f T, as defined
in the previous reports.3 4

FIG. 3. Enery-space currents (2.3b). normalized to exact QSS rate as In addition to the exact QSS treatment, there are now
(Eq (2.3b) with (2.2111 PUfitTNATV8ArObndWiM Ek(f- t mod A-M ih (Z2) PL H& mi C a ) U ( - E/k): three accurate methods available for termolecular rates: (a)for mod/A-M i i and CX. (a) UIL, with Eo. (2.8);

(b) CNN, with Eq. (2.13); (c) ratio of apprximte to exmat derivatives, the previous variational procedure2 which provides, in fact,
Eq. (3.4). an alternative route to the QSS rates; (b) the previous diffu-

J. Cham. PhyS., Vol. 8, No. 7, 1 October 198
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20 ... involve larger energy changes. The CNN probability (2.13)
(a) UIL relies only on evaluation of the collision kernel C .... via

* the relation

P.5 =P!. + C(3.5).... . . 5  ,
--[t o , .- cwhich is simpler to implement than the diffusion method,'

,," . .... •......for which

". sP (Ef) =p(E) + 1K, D( 2
)(E) sD'2 (E)

(3.6)

...... ...... . ... I -which requires highly accurate2 evaluation of the energy-
.3 .1 0 1 2 3 change moment D t)(E) given by Eq. (3.3).

10g a Figure 4(c) shows the rates of the diffusion method ob-

tained from calculations of D,") which are more accurate
1. ............. . than those previously determined in Ref. 4. Comparison

o (b) CNN between Figs. 4(b) and 4(c) indicates that comparable rates
are achieved by the dison and CNN methods. The more

, cx sophisticated diffusion method, however, is, in principle,
1.0 , " more accurate in the limits of small and large mass param-

...... ..... eters a where the collision dynamics is weak so that the rates
,/ are then more sensitive to the stabilization probabilities P,

05 -. ,near the dissociation limit. The diffusion method is also
0. ,/ / .. more accurate for intermediate a - 1/3 since the larger ener-

.Oe. gy transfers tend to be more influential and are included. In
,-./Zspite of these shortcomings, the CNN method yields rates,

J . just slightly less good than the diffusion treatment.
- 2 -1 0 1 2 3

log a IV. SUMMARY AND CONCLUSION
_._ _ With the aid of an electrical diagram (Fig. 1) two ex-

. ...... .... . .treme limits of collisional coupling are investigated in order

(c) DIFFUSION to elucidate the role of various classes of transitions. A given

a level n is directly coupled only to its neighbor in CNN while,

1.0 cx . in UIL, each n is assumed coupled only to the fully dissociat-
Sedand fully associated states of the reactant W and product

J/ channels, respectively. The CNN approximation fur-
nishes closer stabilization probabilities Ps and association

0.6 ',ates a, thereby indicating that recombination tends to pro-
o %. ,ceed more down an energy ladder of coupled levels than by

/ .larger energy jumps I - n - Y involving each intermediate
level n. As in the case for all approximate P s the power

e a .... .. equation (2. 1 ) furnishes" the required rate (which is always
-2 -1 0 1 2 3 higher than the exact QSS rate), rather than j( - E, ) the

og a energy-space current (2.3b) which holds7 only for quasi-

F10.4. Normalized partial rates (MA /MAs )(G/r) for termolecularre- steady-state probabilities (2.2). The E, variation of the ener-
combination A* + B- + M -AB + M resulting from (A *-M) collision gy-space currentsj( - E, ) deduced from non-QSS probabi-
as a function of aas parameter a for various model interactions (CX and lities P s is mainly determined by the derivatives (dPS/dE, ),
O symmetrical resonance charge transfer HS and 0: hard-sphere; POL as in Eq. (3.4). When assessing via comparison with the
and A: polarization attraction). (a) UIL, Eq. (2.1) with (2.8); (b) CNN,
Eq. (2.1) with Eq. (2.13); (c) diffusion method, Eq. (2.1) with Eq. (3.6). exact QSS rate the effectiveness of the underlying physical

mechanism in each approximate model (CNN, UIL, or dif-
fusion) it is important to use the power expression (2. 1 ).
Otherwise, use of Eq. (2.9b), (2.14), or even of the energy-

sional method4 D, and (c) the present CNN method. Meth- space currents (2.3b) as in Figs. 3(a) and 3(b) can lead to
ods CNN and D are in effect similar in spirit in that CNN incorrect conclusions regarding the efficacy of the basic
also includes upward and downward transitions, and also physical assumption.
emphasizes the role of small energy changes between neigh- In conclusion, the nearest-neighbor limit CNN appears
boring levels. The diffusion method, however, does not im- to be a satisfactory approximation for termoecular ion-ion
pose, as does CNN, an immediate cutoff to transitions which recombination over the full range of mass parameter and

J. Chem. Phys. vo. 89, No. 7, Otobw e n
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1. SCOPE

The aim here is to survey the mechanisms basic to various types of

recombination processes and provide some recent results. Most assume

significance in astrophysics (interstellar medium, stellar and planetary

atmospheres) and some in laboratory (Tokamak) fusion plasmas and in various

types of lasers. They span a wide range in physical conditions e.g., the

ranges 10 < T < 106 in temperature T (0 K) and i < N < 1020 in particle density

N (cm-3 ). Recombination includes here not only electron-ion and ion-ion

processes but also ion-atom (molecule) association. Most of the processes

below may be characterized by the mechanism responsible for stabilization of

3 -1an intermediate resonant collision complex. Typical two-body rates k(cm s)

for simple atomic and diatomic systems are indicated in parenthesis beside

each process.

For TeraoLecular Association (TA)

A+ ++28 -32 3 -1A B + MK (AB) + AB + M, (102-10 ) N cms (1)

a U
in a gas H of density N, stabilization of AB occurs via AB - H collisions at

a quenching frequency uq < 10"9 N s - 1 while Radtattue Assoctatton (RA),

A+ + B (AB+) -'AB +h , (I0-9-1017 3 "1 (2)

occurs via photon emission (vibrational and electronic) at a radiative rate r

~ (103_106) s 1 depending on the type (vibrational or electronic) of

stabilizing transition.

For Dissoctattue Recombtnatton (DR),

e AS+  AB + B , (10CM3 1  (3)
I

stabilization of AB occurs by quantal predissociation onto repulsive covalent

15 -Iexcited molecular states at a dissociative frequency v d - 10 s

1 l i, . .



Emission of radiation provides the required stabilization in DMetectrontc

Recobtnat ton (DIR)

e + AZt(i) ' [AZ+(k) - elnWOO 4 A(Z-1)(j;ne) + h , (10" 1cm3 3-) (4)

which occurs at (resonant) electron energies much higher than the lower thres-

hold energies for which the direct (non-resonant) Radtattue Recoubtnatton (RR)

e + AZ+(1) - A( z ' l ) + (i;nt) + hv , (10 - 12 cm3 a- ) (5)

is more important. In contrast to the above formation of intermediate long

lived scattering resonances in (1)-(4), Tersolecular Ion-Ion Recoablnatton

(TR)

A + - + M -# AB + , (10 2 4 -10 - 2 5 ) N cm33-1 (6)

of simple systems proceeds by non-resonant scattering since the Coulomb

attraction cannot acomodate quasi-bound levels. The rates are fast since the

third body M effectively utilizes the many (At-B) Coulombic superthermal

encounters, which occur at large ion-ion separations R < 3 70 2 at room

temperature. Elastic At-M and B_-M collisions are very efficient in removing

most of the energy gained by A+ and B" from the Coulomb field so that the

highly ezcited bound levels of AB so formed are then destroyed by multistep

collisional cascades to stable levels. In parallel to the resonant scattering

in (1), TA can also proceed via non-reonant (A-M) collisions which change

the energy and angular-momentum of (At-B) relative motion.
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Termotecular Electron-Ion Recombination

e + C + M - A(n) + M, (10"26-10 - 29) N cm3 s"1  (7)

also proceeds via collisions with the gas M, but at a much smaller rate, since

elastic electron-atom H collisions cause only a small fraction (-2m/M) of

energy to be transferred to M. Rates become larger for molecular H which

absorb a much larger fraction of energy via rotational and vibrational exci-

tation, and for molecular ions when dissociative recombination involving bound

electrons can provide substantial enhancement.

As is well known, utuaL Neutralization (N)

A + + B - -+ A *+ B , (10"7_-10 "8 ) cm 3 3- (8)

proceeds by direct coupling of the diabetic ionic potential energy curve with

the covalent curves, which however involve much smaller ion-ion separations

R - (10-50) R to yield rates an order of magnitude smaller than for (6). The

fact that the Coulombic interaction between the ions is strong at large

separations where the (Landau-Zener) probability for curve crossing is weak

ensures the dominance of termolecular process (6) over bimolecular process

(8), even at modest pressures. Since collisions with M can form bound (A+-B - )

states which in turn promote more efficient curve crossing, MN can be

oonsideraoly enhanced by an ambient gas. It does not occur parallel to TR (6)

so that the effective rate for neutralization is then not simply the sum (kTR

+ kN) of the individual rates.

In an electron-ion plasma of intermediate density ne - 10 cm

recomb nat ion

e + A+ + e -* A(n) + a + hy (9)



proceeds by collisions into high n-levels, which become de-excited by e-A(n)

collisions and radiative emission. State-to-states rates for DIR (4),

RR (5), DR (3), and NSR (7) would all be relevant. Cotltstortzt-radtattue

recombtnaton (CRR) then yields the familiar set of quasi-equilibrium (input

= output) Master Equations to be solved for the individual excited state

populations Nn in terms of the concentration of free electrons, ions and

recombined atoms in the lowest stabilized states.

1.1 CURRENT STATUS OF RECOMBINATION

The present state of recombination is that theory (with reliable results)

for most of the above processes involving simple atomic or diatomic systems is

reaching maturity and is approaching a well defined Hi-Tech State. In par-

ticular the recent theoretical developments[ 1- 3 1 of DIR indicate that DIR

cross sections may be calculated to within the same degree of accuracy (-10%)

as electron-ion inelastic collisions. Termolecular ion-ion recombination1 4 - 6]

of simple ion systems in a gas has been solved as a universal function of mass

species, and gas density and temperature. Results for simple systems of

general mass are available at low density. Dissociative recombination[8 ] of

simple diatomic systems is in principle well known but lack of relevant

molecular potential energy curves and branching ratios to final products

prohibit rigorous quantal calculation. Ion-neutral reactions and termolecular

electron-ion recombination for complex systems remain by comparision in a more

exploratory condition, although substantial progress[9 "10 ] has recently

occurred.

Reliable experimentsf8 ,11-1 3] exist for DR, TA and MN which proceed with

measurable rates (10"-7_10 9 Cm3s-1). Technical breakthroughs have recently

permitted measurements on DIR ( 14 ' 15 1 and RA1 16 1 which proceed at much slower

rates (10"10-10 "15) 003s-1, respectively. The influence of electric fields in

the experiments is important, particularly for DIR and to a lesser extent for

4



DR. Theories of recombination in external fields are currently under

development.

Although TR (6) is now well understood theoretically and proceeds at the

largest rate of any recombination processes involving simple systems, reliable

experimental measurement, apart from some historical data, [ 1T] is as yet not

forthcoming although some activity has recently emerged. 118 ] There are at

present no measurements from a given laboratory which span the full range of

gas pressures studied theoretically and which monitor the Identity of ions as

the pressure changes. The task is difficult in that the ions may well be

clustered to high orders.

1.2 GENERIC KINETIC AND RESONANT-SCATTERING TREATMENT

Identify the interacting species in (1)-(9) as A, B and N with concentra-

tions nA, nB and M, respectively. The two stage sequence common to TA(1),

RA(2), DIR(3) and DR(5) is the formation of a long-lived unstable collision

complex AB , or scattering resonance, followed by an irreversible stabiliza-

tion mechanism, whether radiative as in RA and DIR, collisional as in TA or

dissociative as in DR. The complex with energy degenerate to and lying within

the continuum of dissociated A(i) + B(J) states is formed when the excess

energy and angular momenta of internal and relative motion of A and B become

redistributed among the Internal degrees of freedom of AB . Following large

perturbations in (A-B) close encounters, a quasi-equilibrium of these excited

states of AB is established. Thus processes RA(1), TA(2), DR(3) and DIR(4)

above may be conveniently analyzed in terms of the macroscopic two stage

sequence
U
k v3

A + B ' AB products (10)
V d

which Involves the stabilization at frequency v5 of quasi-jound resonant

scattering states of AD formed at rate k (cm 3s 1 ) before AB can



redissociate (or autoionize) back to the initial or any other dissociated
0 0

channel at frequency v d. For a quasi-steady-state density nA of the AB

3 -1
the overall process then proceeds at a rate (cm s )

V

='nAB : L ] k s a k (11)

where P is the probability of routing to a particular pair of stabilized

products s. A negative temperature T dependence is anticipated for k since ud

increases with T. As the density N of the gas H is raised, (11) for

collisional association TA predicts an initial linear variation of k with N
*

(when Ud >> vs ~ ks N) increasing towards a saturation value k (when us >>

v.) times the branching ratio [v,/2v ] for that particular pair of products.

The reaction volume (cm3)
* S

K =nA/nAnB = k /vd (12)

is pivotal in determining the T-dependence of the overall rate

vsK(T) V~

k - K(T) k : K(T) Vs d(13)
k +Y.VsK(T) s +d

Note that K is not an equilibrium constant in the usual sense since AB

is distributed only among those states satisfying energy and angular momentum

conservation above the dissociation limit. It is given in usual notation by

h3  q(AB*) "AB
(2K(AT) - T)3/2  q(A)q(B) (14)

6



where q is the internal partition function, or the number of quantum states

available at temperature T - exp(-E 1 /kT), and where w is the electronic
- i

statistical weight, associated with each reactant A and B and with the
*

activated complex AB of reduced mass AB* While q(A) and q(B) are generally

Iknown, q(AB m ust include only those rotational-vibrational-electronic states

of AB accessible at energies above the dissociation threshold of AB. It also

includes states which satisfy conservation of total angular momentum produced

from the orbital angular momentum for (A-B) relative motion and the combined

internal angular momentum of the individual reactants.

The key quantities which characterize the T-dependence and rate limiting

step of each of RA, TA, DIR and DR are therefore K(T) and the stabilization

frequency vs . For polyatomic species, not only is calculation of K difficult

but v is uncertain to the extent that the type of transition (vibration or

electronic) may not be established. This lack can involve at least two orders

of magnitude difference in the rates.
( 10 1

For cases RA, DIR, DR and TA, a microscopic state-to-state generaliza-

tion, (phase-space or multichannel) of the basic premise underlying (11) can

be written down in terms of all the relevant electronic, vibrational and

rotational quantum numbers for the internal degrees of freedom i and j of A(i)

and B(J), for the translational energy and angular momentum of A-B relative

motion and for the total conserved angular momentum and energy. The simpli-

fied expression (11) however not only serves as a guide to experimentalists in

elucidating the role, and extracting the rate peculiar to various stabiliza-

tion mechanisms but is also capable of providing order-of-magnitude rates and

the associated dependence on temperatture T fairly reliably.

The intimate connection of (11), standard in chemical kinetics, with

scattering theory is Instructive. When the redissociation or autoionization

channels in (1)-(5) are considered as a series of non-overlapping resonances

7



and when the non resonant background scattering is neglected, then Breit-

Wigner resonance scattering theory with explicit inclusion of all multi-

channels, consistent with energy and angular momentum conservation, can be

applied. In order to preserve a simple notation to isolate the key connec-

tion, and to illustrate the essential technique, let AB exhibit only relative

motion scattering resonances (quasi bound states) at (A-B) relative energies E

=E. The cross section for the resonant reaction of A and B with internal

energies EA,B is

V h2  w(AB) rars
-(E;EA EB) I 2 w(B) 22 1 2(15)

'III ABI r [(ETE) if

where the total energy of the system is ET = EA + EB + E, where the energy

widths for stabilization and re-dissociation (autoionization) are related to

the corresponding frequencies by

rs = h vs, rd = h vd (16)

where r is the total width (I rd+2 Ys) for all dissociative (d) and stabiliza-

d s

tion channels (s). The electronic statistical weight of species X is W(X).

The rate of recombination for a Maxwellian distribution of relative energies E

at temperature T is

fRT,'11/2

k(T) = ITMA-J a a(e) exp(-e)de ; e E/kT (17)

0

where NAB is the reduced mass of (A-B). Since the Dirac delta function 6(x)

8



r-------- ,

is 7 "1 limr h(x 2 +h2 )- 1 , the rate (17) for sharp resonances r << (ET-E *) then
h-o

reduces to

h3 (jAB vdvs

k(TEEB) h3 eg[ dS P-E/kT)] exp(E +E )/kT (18)
A (7Mk)3/2 (AwB (IV s +Vd) rA B

ABr4~T r s

On assuming that the frequencies are independent of the resonance

positions Er, then I exp(-Er/kT) is then simply the partition function q(AB )
r

*
arising from all the resonance states of AB On averaging over all internal

states i and J of A and B and with the use of detailed balance, (12), (11) and

(14) are then recovered since I exp(-EA/kT) exp(- EB/kT) is the product
i,J

q(A)q(B) of the reactant partition functions. This connection provides a

basis for (11) or (14) more quantitative than the earlier steady-state kinetic

rate argument. The extension to include all multichannels directly is

straight- forward, but the case of overlapping resonances existing in various

polyatomic systems requires attention, and may well under approximation

provide the rate (13) in current use.

Because of the long range Coulombic attraction in the entrance channels

the remaining related processes (TR, TER), as indicated earlier, do not

proceed via the resonating tight complex but rather by energy-changing

collisions between M and (A -B- ) pairs. The collisions are effective for

those pairs with separation R < R = e 2/kT - 370 R at room temperature, which

in a sense can be regarded to form an extremely large loose non-resonating

4
omplex with reaction volume K - ' 3. At low gas density N, (13) predicts

l3R ~ = 4 R3 <vAB> N a (19)

9



where a is the cross section for free-bound energy-changing (A+-B-)-M

collisions, and emphasizes the characteristic linear N and the T5/ 2 -T 3

dependencies. At high N, however, the rate does not converge to the

saturation value k predicted by (13). The rate of approach of A and B- to

-IRT is limited by the transport rate, which decreases as N" and which becomes

comparable to the reaction rate (19) within RT at about -1 atm. For TA(1)

however the transport rate always remains much higher than the rate limiting
w

step of reaction so that saturation to the thermal rate kI is eventually

obtained.

10



2. RADIATIVE AND TERMOLECULAR ASSOCIATION

2.1 SINPLE SYSTEMS: The underlying physics of Radtattue RecombinatLon

of simple system as

C+(2P112) + H( 2S) - CH+(Al1) -* CH+(X 1 ) + hv (20)

becomes transparent in a semiclassical treatment, 
[19] where the cross section

is

00

G(E) = 2w f Pr(E,p)p dp (21)

0

at relative energy E. The probability of radiative emission during a

collision at impact parameter p is

O o

Pr(E,p) = G(t)A(t)dt = G(R)A(R)dR/vR (22)

_-o R

where the radial speed at relative separation R is vR with turning point RT,

and where G(R) is the probab'lity that CH+ during the collision is in state i

(A U1), which radiates at a local rate

4h 4c3 IM(R)12 E~R
A(R) 4 h AE3(R) (23)

to the stabilized state f(X ). The molecular states, with wavefunctions ik

and energy separation AE(R) V f(R) - Vi(R), are connected via the dipole

I

1



matrix element M(R) : <*f(r,R)Ier~i~(rR)>. Rates kRA : 1.3 10
-17 cm3 s- 1

obtained[19] for (20) over the temperature range 20 < T (OK) < 1000 do not,

however, satisfactorily explain the discrepancy between the observed and

theoretically deduced abundances of the radical CH+ in diffuse interstellar

clouds. A quantal treatment can in addition acknowledge the discrete

vibrational levels of the intermediate electronic state i(A 11) and can include

quasi-bound resonances formed within the centrifugal barrier. These effects

enhance[20] the semiclassical rates for (20) by - 25%, mainly at lower T.

Also state i may support predissociating levels between the fine structure

state C+ ( 1 2 ) and C+ (2 3 /2 ) of the reactants. No full treatment has as

yet been performed.

Termolecular Association

A+ + B + M AB+ +M (24)

for formation of simple diatomics as He2
+ , Ne2 , etc. can be considered

[2 1 ] as

proceeding via a multistep series of collisions between (A+-B) pairs and M

which change both the energy E and angular momentum L of relative (He+-He)

motion to such an extent that bound stabilized levels are. formed. At lower

energies E there is an additional contribution from quasi-bound resonances(
2 2 ]

formed at positive E within the centrifugal barrier.

A multichannel generalization of (13) to simple (structureless) atomic

systems yields the termolecular association rate
[2 3 ]

L 2max k KiN

'TA adE x dL2  1 ki  (25)
o o +k" KN

where subscripted-i rates refer to specific energy E and angular momentum L of

A-B relative motion, where Lmax is the maximum L of the complex at fixed E,

12



and where

R

k 3 N n n n1(R) v 1(R)dR (26)

is the overall frequency for stabilization of all the (A-B)i-pairs with

internal separation R between the innermost turning point Ri of radial motion

and the radial boundary R0(E,L) of the complex. The pair-distribution per

unit interval dR dE dLl2 is n (R), and v (R) = k N is the frequency of (A-B)

- M quenching collisions with rate kq at fixed (R, El, Li 2). At low gas

densities N this distribution can be taken as its equilibrium value hi, since

Vi in (26) is already linear in N. When the quenching coefficient kq is

constant, and equal to some fraction J of the constant Langevin limiting rate
*

for spiralling (AB -M) collisions

kL = 2ve(/K )1 2  (27)

0
where N is the polarizability of M and H is the reduced mass of the (AB -M)

system, it then follows that

Ro(E) 22
n j dE dR fl(R)dL2

0 0 0

~Ro(E)

2 3
(kT) 3 / 2 j exp(-E/kT)dE [ [E-V(R)]112 dR (28)

o o
0 0

For polarization attraction V(R) B (e 2/2R 4 ) between A+ and B of

polarizability a and orbiting radius Ro(E) (%e2/2E) 1/ 4 , (28) yields

13



4 38
nl R1 L (29)

where RL is (aBe2/2kT)1/4 and (81W) arises from both the focusing effect and

the enhancement of R at small E. The association rate at low N is then0

=* 1-28 -31 3 -*1 (0

kTA n [P(T,N)kL]N (10 - 10"31)N cms (30)

which exhibits the temperature dependence P(T) T 3/4. The efficiency P - 1,

but for He+ - He charge transfer collisions the quenching rate kq V ANOAM'

involves an additional (kT) / 2 factor from vAN and a factor (kT)" from

focusing effects so that kA - T at low temperature.

2.2 COMPLEX SYSTENS: Here, rates are much higher due to increase in the

physical size and in the number of internal modes of the intermediate complex.

For triatomic ionic systems as
3

k r

C + H 4d (CH2+)* - C +hv (31a)2 vd 2'

which initiates carbon phase chemistry in diffuse and dense interstellar

clouds, [24 and for polyatomic complexes as in either

CH + H (CHs+) CH + + hv (31b)

p 191
which is a precursor to the formation of methane (CHI), or in

k VOH + 0 d ( H t0)* r

CH + H( CH +H20 + hv (31c)
3 2 V C 3 .H20 3. C P 20

14



which can be photodissociated [24 to produce methanol (CH3OH) in the

interstellar medium, the "kinetic chemical" approach is as yet the only viable

method. The collisio n duration Is much longer than that for simple systems as

(20) and there are simply too many degrees of freedom in the Intermediate

complex to consider in a full quantal state-to-state fashion. Moreover the

complex offers a near continuum of closely spaced vibrational (and electronic)

energies, overlapping resonances and many intramolecular processes so that a

state-to-state method could not be considered as providing the most efficient

or realistic description.

In order to isolate radiative association (RA) from termolecular

association (TA) extremely low neutral densities < 10 10 Cm-3 and temperatures

T (OK-300K) are required. The mechanisms often proceed in parallel so that,

in the coupled sequence,

k ur

A + B + (H) AB AB + hv (32)
d

k V

4 AB -o AB + M (33)Vd

radiative association occurs at the rate

kRA - AB Ur  d k (34)

and termolecular association at the rate

kqM

kTA nAB Vq k (35)
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-- w --

The frequency of stabilization of the complex, against both natural and

collisional disruption at frequency vd, is

V :iir + kq N (36)

the sum of the radiative decay frequency vr, and the frequency kqN for

collisional quenching. At low densities N(H2 ,He) - (103-1010) cm- 3 in

interstellar clouds, vs = Vr << Va' so that the overall association is

radiative controlled proceeding at rate

kA = kRA = K vr (37)

where the reaction volume is given by (14). At intermediate densities

(1010_1016) cm-3 , vs still remains << va, and association proceeds at rate

kA = kRA + kTA = K (v r + kq N) (38)

which increases with gas density N, until it saturates to the limiting rate
U

kTA = k of collisional formation of the original complex. The rate (38) is

determined by the character of the interaction between the transition channels

within the complex and differences in temperature dependence are mainly con-

trolled by the T-variation of the reaction volume K(T). Radiative stabiliza-

tion rates v r for complex systems are also uncertain, but are expected to be

vr D 103 s -1 for vibrational transitions and v r 105_-106 s -1 for electronic

transitions. The larger electronic rates Vr permits association in inter-

stellar clouds to proceed faster than originally supposed. (91
0

Typical values for the relevant rates are the Langevin limit k - 10-9

cm s1 Va 1  , vr - 1 and the Langevin limit Vq - 10 N a

16



Radiative rates k RA - (10-13_10 11) 3 s-1 and termolecular rates kTA ~

10"25 N 3 a-1 are then expected for complex systems at low gas densities N.

Termolecular association therefore begin to compete with RA for N - 1012 cm-3

while at higher N > 1015 cm-3, TA becomes dominant.

Few experiments exist on RA, mainly due to the smallness of the rate

- 10 "13 cm3 s - 1 and difficulty in achieving low temperatures (T - 10K) and

densities (N < 109 c&-3) needed for isolation of RA. The TRAP technique of

Dunn and associates[16] represents a spirited effort while at higher N - 1011

- 1013 c "3 , the ICR (ion-cyclotron resonance)-experiment ( 2 5  measures the RA

and TA combination (21). By contrast, many TA experimental studies at yet

higher N > 1015 cm-3 exist for atmospheric species - the SIFT (selected ion

flow tube) technique (121 being the major contributor. For TA, reasonable

(order-of-magnitude) agreement exist with theory, particularly in the tempera-

ture variation. For RA, the few measurements of (24) and (25) do not agree

with available theory and do not furnish information on the type (vibrational

or electronic) of radiative stabilization. Interesting discrepancies between

experiment and theory based on (42) and (43) for polyatomic species are

discussed by Bates and Herbst.
1 10 1

3. DIS=OCIATIVE RWMWND TIONI

3.1 DIRECT PROCESS

In the direct two stage mechanism (Fig. la)

k u
. S 1/2-7 3-1e + AB(v) ( (AB Ar A+B, kDR - (300/T)1 10- cm 3 - (39)

the electron of energy e excites an electron of the ion-core AB and is then

resonantly captured via a Franck-Condon (FC) vertical transition onto the

repulsive state r of the double excited molecule (AB). Competition between

reverse autoionization at nonlocal frequency u a and predissociation at
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nonlocal frequency vs continue until the electronically excited neutral

fragments accelerate past the stabilization point Rs . Beyond Rs the

increasing energy of relative separation has reduced the total electronic

energy to such an extent that autoionization is essentially precluded and the

neutralization is then rendered permanent. The kinetic energy of the electron

(in the field of AS+ ) is effectively transferred here to motion of the nuclei

not by direct collision but via a rearrangement in (39) of the whole

electronic cloud. DR is a ",reacttue" process in the sense that the reactants

and products involve different collision partners.
*

The autoionization character of AB for R < R makes resonant captures
originally possible, and the covalent repulsive character for R > R makes

neutralization finally permanent. For reasonable capture over a range of e,

the autoionization width ra - h va must not be too small, while large

stabilization probabilities P demand small widths. The requirement ofs

resonant capture without any energy transfer between electronic and nuclear

motion is that the vertical difference in the potential-energy curves (PE+ and

PE ) for XY+ and XY equals E (Fig. la). For thermal-energy electrons this

requirement is best fulfilled when PE crosses PE+ on the right side of its

minimum (of. Fig. la), as for most cases of doubly excited electronic states

with more than four electrons. This energy-matching can consequently occur

over the full range of e.

Large capture rates depend therefore on good electron-electron communica-

tion (correlation) and on good vibrational overlap between the AB+ bound and
£

AB -continuum nuclear wavefunctions, an overlap which is sersitive to the

initial vibrational level vi of the ion and to the crossing of PE and PE+ .

When the only crossings in Fig. la are provided by the upper repulsive PE

curves, then the capture probability remains small for vi =0 ions and thermal

electrons, and becomes large only when these curves are accessed by more
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energetic electrons e > 0.5 eV, which imply however smaller Coulomb focused
-1 4

scattering cross sections a -e -. This is the situation with H2
+ (vi=O) and

He2
.  Conversely, the overlap of AB+ (v =2) in Fig. 1(a) with the lower PE*

is poor, relative to the much larger overlap with the upper curves. Note a is

measured from R on PE+ .

In keeping with (11), the recombination cross section for simple systems

may be factored as

acD(R) c() P () (40)

where the cross section for capture at R as [ 2 6 ]

c

C 12 +
a(6) - IV(R, ) I2V(R)I[dR/d(PE)]R c(41)

c

Here V(R) is the electronically-averaged interaction coupling the initial and

intermediate molecular systems, *+ is the vibrational wavefunction for AB+(v)v

and C is (2 3/m h)[ (AB)/ (AB+)]. The stabilization probability is given as

in (11) by v /(V +1 V ). By analogy with dissociative attachment, it may also
a s

be approximated by,
[261

t
3

P3 ) = exp[- I [ra(R)/hldt] (42)

t
c

where Fa(R) is a local autoionization width (so that F h Va is the prob-

ability of electron ejection per unit time) and where the integration is over
*

the interval from the time t c at formation of AB at Rc to the time t when

stabilization at R is rendered permanent. This interval depends on the total

energy and slope of PE . Although the local f (R) in (42) is not strictly
a
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appropriate to recombination at thermal e, (43) remains useful as an estimate

of the influence of autoionization. Thus P is reduced by an increase in

number of open bound vibrational channels over which autoionization proceeds

when electrons are emitted not only at energy ea z e but also at ea o e when

the energy imbalance is absorbed by vibrational motion. It is enhanced not

only by a reduction in the time interval, but also by an increase in the

density of intermediate complexes and product channels, as with ion-clusters.

The e- -dependence of ac results in recombination rates (11) which decreases

as Te- 0 5 For typical diatomic molecular ions as Ne2
+ or NO+ , dissociation

15-1 014 -1

occurs at frequencies ua 1015 s , large compared with va 10 s for

autoionization, so that P5 is close to unity. At thermal energies Coulomb
-1 ~ 114 2 .o(e+

focusing dominates the capture so that a ~ - > cm . Rates R(Ne)

- 2 10-7 (300/T) 0.5 am3 s- 1 are then quite typical, As one proceeds through

an ion sequence (Ne 2  - Xe2 ), the natural increase In ac is due both to the

stronger interactions and larger vibrational amplitudes and P remains sub-5
I

stantial. Owing to the increasing steepness of PE , it generally increases.

Continued increase in ac however implies a corresponding increase in auto-

ionization width so that Ps will eventually decrease, until it becomes limited

to (Vs/Va) as for the case of polyatomic systems.

3.2 INDIRECT PROCES

In the following indirect additional mechanism for DR,(
26 1

e +B ) AB*(n,v)] (AB*) -A 13
• AB(v) a r - A + B (43)

the electron is captured into attractive (a) vibrationally excited (v')
U

Rydberg states (n) of AB which converge to the initial electronic state of

AB+ (Fig. 1b) and which are then coupled by configuration interaction to the

dissociative channels. The first stage involves energy transfer from the
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electron directly to vibrational excitation of the nuclei. In contrast to the

broad 6-range enjoyed by the direct process (31), only selected energies a'

close to the Rydberg level (Fig. 1b) contribute to the indirect process which

is therefore characterized by a series of narrow resonances (enhancements or

dips) in the overall recombination cross section at the low electron energies

e < 1 eV favored by this process.

The formal multichannel quantum theory of DR via the direct and indirect

mechanisms can be constructed.[81 For full quantal calculations the following

information is required as input: (a) identification and calculation of the
0

relevant PE+ and PE curves for the capture cross section including those for

the vibrationally excited Rydberg state, (b) the quantum coupling between the

autoionization and dissociation channels for the widths ra and r s and (c) the

branching ratios to all possible products of dissociation. Since the coupling

(b) appears as a resonance in the asymptotic phase of the electronic

wavefunction the widths may be obtained either from direct electron-ion

scattering calculations or from extrapolation of the properties of the Rydberg

and valence bound states across the ionization threshold. The main

theoretical problems are associated with the uncertainty of the role of the

vibrationally excited Rydberg states and with the branching ratios which in

turn involves solution of a set of coupled equations incorporating the

interactions between the various products of dissociation. The "reactive" DR

process combines therefore both electron-ion, ion-ion and neutral-neutral

scattering technologies. Because of the sensitivity (as indicated above) of

kDR on the slopes, shapes and relative positions of PE+ and PE and the lack

of accurate PE curves for most systems, rigorous calculation has been confined

mainly [27,28] to H2
+ and to some diatomic ions (N2

+ , 02+ and NO) of

atmospheric significance. [8)
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DR for even the simplest diatomic system e+H2 +, although not quite

typical, is instructive. The sole candidate in the direct process for e-H2 +

(X2g,V) recombination at low energies a < 1 eV is the lowest doubly excited

19 (2pu ) 2 state of H2 which crosses the ion state in the vicinity of

the v = 2 level, and which dissociates into ionic fragments H+ + H-. Because

of the propensity rule Av' = 1 for vibrational autoionization in (43), the

recombination can be actively hindered by the higher vibrational levels v' of

Rydberg states (isog nm) with intermediate n < 8, and the contribution from

these levels is weak. However, the sequence, coupling the direct and indirect

processes,

e + H2
+ (v=O) -P H2 - H2 (n,v)2) -j H2 -j H2 + e

does interfere destructively[27,28 1 with the direct process. The resulting

resonant dips in the cross section have Just been observed. [291  Rates for e +

H2 +(v) can be given as ko0 (300/T)' 10- 9 5M3 s - 1 where (ko,-) have just been

calculated [2 8 as (0.8,0.3), (6,0.5), (0.45,0.66), (0.66,0.32) and (1.1,0.77)

for v = 0, 1, 2, 3 and 4, respectively.

The DR-rate for CH+ (vzo) at 1200K wa also calculated[2 8] to be - 1.12

10- 7 cm3 s - 1 in good agreement with a merged beam experiment.
[8 ]

Even though measured DR rates for many ions of planetary and astro-

chemical interest can be used with reasonable confidence, severe disagreement

exists for the simplest triatomic H3 + important to the Jovian atmosphere and

to interstellar chemistry. The rate is expected to be small since the 2A1

repulsive part of the PE curve of H3 intersects the 1A state of H,+ at 1 eV

above the v=o level. Recent measurements[30 ] which vary from 2 10-8 cm3 5-1

at 100 0K to 1 10- 8 cm3 s-1 at 1000 K for v=o and 1 ions are orders of

magnitude higher than the revised upper-limit rate [3 11 of 2 10- 1 1 cm 3 a-1 at
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300 K. The merged beam experiment[ 3 01 detects the neutral products while the

Flowing Afterglow Langmuir Probe (FALP) experiment t 3 1 ] measures the loss of

H ions, and this may well be the source of the discrepancy.

Polyatomic ions and clusters offer many more additional degrees of

freedom for capture of the electron, in both mechanisms. With increasing ion

complexity, the multiplicity of readily excited internal modes of small energy

separation makes the near resonant energy conmition of the indirect process

easier to attain by presenting a near continuum of closely spaced vibrational

energies and trapping becomes more efficient over a broad range of e'. This

is confirmed by the large rates kDR - 2 10-6 (300/T) 0 4 for dimer complexes

N2 oN2, 02 +02 and COCO, important in atmospheric chemistry. That polar

clusters H 3 0+(H20)n and NH4 + NH3 with rates kDR ~ 3 10-6 cm
3 s-1 appear

fairly insensitive to T, has as yet not been satisfactorily explained.

As systems become more complex (We2 -* Xe2 +), the resulting increase in

the capture cross sections ac tends to be offeet by a corresponding decrease

in the stabilization probability Ps from near unity until stabilization

becomes the rate limiting step. The rate from (11) is then

kRA 2 K(T) vs  (44)

where the reaction volume has now the interesting form
[9 ]

K(T) h3  (AB*) 1 2 dR 1
M " 3exp(-E/kT)dE(

which contains an effective Franck-Condon factor which essentially selects
*

only that portion of the full internal partition function of AB that

contributes to the capture by the vertical transition at R = Rc. Polyatomic

systems relevant to interstellar cloud chemistry have recently been discussed

by Bates.
[91
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4. DIELECTRONIC AND RADIATIVE RECOMBINATION

Dielectronic recombination (DIR) at high temperatures (-106 K)

*

k v

e(fP)+ AZ+) (i) (A(Z-l)+(k)-e] A(Z-I)+ J) + h1 (46)
a

is a resonant capture process into doubly excited Rydberg levels subsequently

stabilized by radiative emission at frequency v adjacent to, and usually on

the lower frequency side of, the resonance transition

A Z+(k) -, Az+(j) + huR (47)

of the recombining ion of charge Ze. These satellite lines are observed in

solar and in high temperature fusion plasmas and provide valuable diagnosis of

electron temperature, electron density and the various stages of ionization.

The frequency shift which originates from core perturbation by the ne-electron

is small for high Rydberg ne-levels but would be quite large for low-lying n

levels. Since the product ion may be subsequently re-ionized by i'teraction

with its environment the stabilization mechanism is not quite as secure as

that for dissociative recombination.

Although stabilization of the high Rydberg ion mainly occurs at h!gh

electron temperatures Te, by the inner-core transition (47) with the captured

electron as a spectator, stabilization can also occur by a radiative transi-

tion ne - n'e' of the outer electron. This mechanism tends to be effective

40mainly at much lower temperatures (< 10 K) characteristic of planetary

nebulae. It is also effective for Jons with low lying metastable levels, as

in
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0 w

(4S) -+ 0 [2p3(2D)n'e' ] - 0 ( D,ne) + hu (48)

The rate for dielectronic recombination (DIR) for an initial state I of

the ion is, in the isolated resonance approximation (IRA), given by (16) as

( L va(d-,i)v (d-*f)DIR L(2wmT)3/2J d r Vafd

where gi and gd (z2(2e+1)) are the electronic statistical weights for state i

of the recombining ion and for intermediate resonant state d (=ne) at energy

E: above state i. Each resonant state d may autoionize back (via an Auger

transition) to state i with frequency va (d+i) or radiate with frequency vr

(d-f) to bound levels f. The total radiative and Auger rates from d to all

states are vr(d) and va(d), respectively. The total DIR rate is obtained by

summing over all possible initial states i, intermediate states d and final

bound state: f. Note that the factor h3/(2imkT)
3/2 in (49) is (4wIA/kT)3/2

ao3 = 4.1212 10-16 T- 3 / 2 cm3 .

DIR within the past three years has been subjected to intense theoreti-

cal [3' and experimental[ 15 ] study. The existing calculations are based on

either the Coulombic model, the distorted wave method and the relativistic

configuration interaction method. For example, Chen [311 in a series of

excellent papers has used the multiconfiguration Dirac-Fock model to evaluate

the detailed transition energies and Auger and radiative rates. The calcula-

tions not only include the Coulomb - interaction but also the Breit inter-

action and other quantum-electrodynamic corrections. A considerable amount of

theoretical data has now been accumulated [3] for many different isoelectronic

sequences - for cases when the number N of electrons in the initial ion is

N = 1-5, 8-12, 18 and 19).
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The autoionization frequency decreases with (n,) as va - n 3 exp(-at )

owing to a decrease in communication between the core and Rydberg electrons,

and is independent of Z. The radiative frequency is ur - a3Zp for core decay

(p = 4 or 1 with or without a change in core principal quantum number) and vr

3 3ra Z/n for outer electron decay. For small n << 50 and low e, r << a soa

that (49) is radiatively limited. At nebular temperatures T - 104 K the

exponential in (49) restricts the sunmation to levels within - 0.15 eV of the

ionization limit and vr is determined by outer electron decay. Since va << ur

I for large n, convergence can be obtained. Rates kDIR - (12-7) 1012 CM3 -1

2+ 3+ 4+ 4
for C , N , 0 recombination at T -10 K which exceed the direct radiative

contribution are typical.
[3 ]

At high T (- 10 °K) 1 1 keV characteristic of the solar corona, the full

Rydberg series of autoionization levels must be included and core relaxation

is the main radiative decay. For n >> 50, va << vr so that (49) is limited by

autoionization. While the number of resonances increases as 2n2 , only the low

e fraction are effective. Electric fields can however mix high t-states with

low e-states so that DIR could be significantly enhanced. Typical rates [3 2 ]

are - 3 10- 11 CM3 - 1 at 1 keV for F-like Se25+ - an X-ray laser candidate.

The separation AE (a.u.) between resonances of Rydberg series is - Z2/n

which can become less than the radiative width F h v . The detailedr r

resonance structure is then smeared out by interaction with the radiation

field and IRA breaks down. Bell and Seaton2 have solved this problem by

quantum defect theory which because of its close connection with Rydberg

series is ideally suited to DIR. Thus DIR-cross sections can in principle be

calculated to the same accuracy as electron-ion scattering cross sections (to

within 10%).

For ions with low Z, Coster-Kronig (CK) channels, such as ls2pnt

ls2s + e for He-like ions, become energetically accessible for large n.
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This effect of autoionization to excited states of the recombining ion has

generally been neglected in the fluorescence yield vr (dof) fur(d) + u a(d) 1

in all calculations of (49) until only recently. For example, the onset of

the above CK transition for Be
3+ ion is at n 3, and n increases with Z

7+ f[2J
(e.g., n 9 for F ). Inclusion of CK transitions reduce

2  the peak

values of the total DIR-rates for B3+ , N5+ and F7  by 60%, 13% and 4%,

respectively. This trend is correct since the relative contributions to DIR

from high n-state (important at low Z) decrease with n, while the onset of

CK-transitions occurs at higher n as Z increases. The CK-effects are not,

of course, included in the largely historical semi-empirical formulae of

Burgess 33 ] (for core decay An = 0) and of Merts et al.
13 (for An z 1).

These formulae, although used quite generally by astrophysicists, over-

estimate [ 3 2 1 small Z-rates by a factor of 3 and underestimate large Z-rates

by as much as a factor of 2.

In addition to CK-transitions for low Z, some remaining problems appear

to be (a) effects of external fields on DIR, (b) three-body density effects on

kDIR and (c) fine structure effects. For (c), fine structure states of the

excited ion-core provide two Rydberg series of autoionization channels which

can mutually interfere (as in the decay 3P31 2 (ne) - 3P 1/ 2 (ele) + 33112(&2e )

in Mg ). A problem which appears to be solved is the coupling between

resonant DIR and the following non-resonant radiative recombination (RR)

which, while negligible for ions with low Z, becomes appreciable at high Z,

The subsequent chain of atomic processes in astrophysics was initiated by

the basic (e-H4 ) Radiative Recombination (HR) process

e + AZ+(1) - A (z-1)(n) + ho (50)

into level (ne). Since RR is a direct inverse of photoionization with cross

section an (hu), the RR rate by detailed balance is
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(T) - 2 - ie / - (hv)exp(-hv/kT)d(hv/kT)

(51)

where g, and gne are the electronic statistical weights of the initial ion and

the recombined ion in level nt with ionization potential InW Various

analytical forms for cI can be adopted e.g., when (hv) oI(hu) equals its

value I3 ane (In) at threshold then the rate is

~) 1.5 10 TJ n2 [ n' (T) cm 3 -(
(T) = 1.gi a (52)

where, in terms of the exponential integral El, the averaged cross section is

a I M o  [xn exp Xn]El(Xn) ,  Xn In/kT (53)

which reduces at low temperatures kT << I ton

-nt e[_k/ 2 3a-I (T) o [1-(kT/I n ) + 2(kT/I ) - 6(kT/In) + ... ] (54)

The quantal cross section for photoionization of hydrogenic ions of

charge Z by radiation of scaled energy w(=hv/I n) is

-3

crne hu aKn(w) Gn (() -0(55)

-e-7/21 , hv >> I n

The departure from the (Kramer) semiclassical (high n and E averaged)

photolonization cross section 
[35 1
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gl.

n( 2a a J irao2  7.9 n2z 4- 3( b) (56)

2.2

where a is the fine structure constant (e 2/hc) is given by the bound-free

Gaunt factor GnP. The rate (14) is then

ne 1/21n 12n3 2 - ntkR (Z'T) : ] [')n ("ao2 a0Ft ) (57)

Departures of (57) from the above standard (Z2 n-3 T- 1/2) low temperature

rule is provided by the function

1 00 Gne(w)

Fn(T exp T jl - exp(-/T )dw (58)Fnt( LO T W x(/

1C

which decreases monotonically from G (1) as the scaled temperature T
C

(:kT/In ) increases. For interstellar clouds kT<<In and Fn (T «1) tends to

Gn(1) the threshold Gaunt factor. Note that (57) also provides the universal

scaling law

kR (Z,T) = ZkR(1,T/Z2  (59)

Recombination rates are greatest into low n levels and the W

variation of Gnt in (58) preferentially populates states with low t - 2-5.

Highly accurate analytical fits for Gne(w) have been obtained[36 ] for n < 20

so that (57) is expressed in terms of known functions of fit parameters. This

procedure (which does not violate the S2 sum rule) has been extended
(361 to

non-hydrogen systems of neon-like Fe XVII, where ane(w) is a monotonically
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decreasing function of ci.

2n-1i36
Variation of the 8-averaged values, n - (2 +l)Fne(T), is close [36 1

in both shape and magnitude with the corresponding semi-classical function
I

S(T ) i.e., (58) with Gn1() = 1. Hence the t-averaged recombination rate is

1 .1 9 2 , 1 2 3 0 0 1/ 2 Z 21 6 0
k - 3 10 - Fn(T ) m3 s-  (60)

where Fn can be calculated directly from (58) or be approximated as Gn(1)

S(T ). A computer program based on a three term expansion of Gn is also
available. [37]

Tables exist(38 ] for the effective rate

0 n-1

(T); k ' C et (61)
nl=n Vt=O

of populating levels ne of hydrogen by radiative recombination rate all levels

n' > n followed with probability Ci~ for subsequent radiative cascade (if)

via all possible intermediate paths. Tables[ ] also exist for the total rate

nn-

0A= n-2 Of (62)

n=N e=o

of recombination of levels N and above of hydrogen. They are Useful in
deducing time scales radiative of recombination and rates from (59) for

complex ions.
When effective at higher temperatures, dielectronic recombination

proceeds in general faster than RR. Since kR  Z2 , RR can however become

30
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competitive for highly charged ions. A unified treatment of DIR and RR has

recently been presented. [391 The mutual interference of the corresponding

amplitudes and continuum-continuum coupling is expected to be most important

for individual transitions involving low-lying auto-ionization levels and is

probably negligible for DIR arising from highly excited levels. If the

photoionization cross .ection a P(hu) already includes the effects of

autoionizing resonances, no further correction for DIR to RR may be necessary.

5. MUTUAL NEUTRALIZATION (MN)

Until fairly recently (1981), lack of agreement of various curve-crossing

and Landau-Zener type theories with experiment for such a simple system as

H + + H H (n) + H (63)

remained embarassing, and agreement between the two main experiments remained

very good. Then a 1983-theory [40 which included couplings (neglected in

previous theories) to the n = 3 leiel still did not agree with measurement,

until new experiments [ 4 1 ,4 2 were performed in 1984 and 1985. The process

(63) is now apparently well understood, but careful quantum mechanics and

experiment is required.

In dense interstellar clouds, MN of complex systems can be important and

can produce qualitative changes 24 1 in the chemistry sequence. For example,

when polycyclic aromatic hydrocarbons (PAH) exist in high abundance, the

negative charge is carried not by electrons but by PAH- so that MN, as in

C+ + PAH- P C + PAH, replaces dissociative recombination (DR) so that the

C-abundance is enhanced. [241
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6. TERMOLECULAR RECOMBINATION

6.1 ION-ION:

The theory of termolecular ion-ion recombination and

a

A++ B_ + M AB +M (64)
k

of positive and negative atomic ions of concentrations NA,B(t) at time t in a

gas M is also well established, [43 and is also suitable as a case study. The

effective two-body association rate a(N,T) cm3 s-1 and the dissociation

frequency k(N,T) s-I are functions of gas density and are given by
[431

a NA B t P£ dE J (Pi-Pf) C ifdE f = k (65)
-D -D

S
where Pi, which measures the departure from equilibrium, is the stochastic

probability that a pair (A -B-) with energy-distribution n over internal

relative energy Ei of the pair is connected via a multistep series of energy

(state)-changing collisions to a stabilized sink I of low lying fully

associated pairs of concentration ns (cf. Fig. 2). The sink it extends over

the energy range -S > Ei > -D where -D is the lowest energy level and where -S
S

is that bound level below which P is unity. The one-way equilibrium rate C

for £1Ef collisional transitions per unit interval dEjdEf is fI1Uf, and the

distribution nt satisfies the input-output collisional Master Equation
[431

dni
dt [Zc(t) (t)] (P -Pf) Cif dEf (66)

-D

where the departures from their steady equilibrium (tilda) values of the total
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time-dependent concentrations of fully dissociated pairs (in block 9, 0 < Ei _

= where P 0 O) and of fully associated pairs (in block V where P 1 Z 1) are

0c(t) (t)NNB ; Ys(t) = ns(t)/n s  (67)

respectively. For quasi-steady-state (QSS) of the intermediate block £ (0 >

Ei > -S) of highly excited levels at time t, (66) vanishes so that (64)

reduces to

-E

a NN dE (P -P i) CifdEf (68)

-E -D

for arbitrary energy -E in block 9.
[44] S

6. 1. 1 VARIATIONAL PRINCIPLE: It has been recently proposed [ 4 4  that P are

so distributed that the rate (65) is a minimum. This distribution leads

exactly to the QSS-distribution given by (66) set to zero. Thus (65) provides

a variational expression for the QSS condition, so that P may be determined

(Fig. 3) variationally or from the direct solution of the integral equation

(66). The Variational and QSS 4 3 ] rates obtained are of course identical.

6.1.2 DIFFUSION METHOD. By performing a Fokker-Planck conversion of the

integral equation (66), the resulting (but approximate) differential equation

is identical with a diffusion equation in energy space which can be solved

analytically for PS (Fig. 3). Insertion in (65) yields a proposed diffusional

method [45 ] which is highly accurate (Fig. 4).

6.1.3 BOTTLENECK LINIT. On assuming that pairs above and below a bound level

-E are in equilibrium with the fully dissociated and associated (blocks C and
S S

S, respectively (i.e., Pi = 0 for Ei > -E and P = 1 for Ei < -E) then either

(64) or (68) yield,
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00 -E

a(-E) CARB I I dEf (69)

-E -D

the one-way equilibrium collisional rate across -E, which is then an upper

limit to the exact rate. Variation of a with -E yields the least-upper-limit

at the bottleneck energy E (see refs. [231 and [43]).

Other approximations such as Coupled Nearest-Neighbor (CNN) limit and

Uncoupled Intermediate 9-block Levels (UIL), based on analogy of (65) and (66)

with electrical networks recently proposed, have also elucidated the modes

of energy reduction.

6.1.4 GAS DENSITY

As the gas density N is raised non-equilibrium effects in internal

separation R of A+ and B- must be considered. The appropriate input-output

collisional-transport Master Equation satisfied by the distribution n,(R) of

(A+-B " ) pairs per unit interval dR dEi has been shown to satisfy the

continuity equation(
47 1

d ani 1 a
n(R,t) - + R [R (R)]Ei

-1 [ni(R)vif(R) - nf(R)vfi(R)]dEf (70)

V(R)

where jd(R) (: Ji - Jr) is the net outward transport current of pairs
expanding at R, where vif(R) is the frequency per unit interval dR dEi dEf

for Ei -* Ef collisional transitions for ions at fixed separation R and where

V(R) is the energy of interaction between A and B. Integration of (70) over

all accessible R yields the standard Master Equation (66).

The question of reproducing the cumulative effects of multistep
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energy-changing collisions by an accumulative strong collision within a loose

collision complex of radial extent RT can now be examined. [431 The ratt of

A
recombination within a sphere of radius RT and the overall probability Pi(FtT)

of association within RT are related by low gas density by

to

0

which is expressed via (70) in terms of the stabilization 
probabilities Pfs

by(431

00 FT 0

a(RT)~ N 3Ejl dt Ci S dEf (72)(T A" B I di if Pf f

o o V(R)

A strong-collision (or classical) treatment refers to the assignment P = 1 in

(72).

Fig. 5 illustrates the ratio of the effective strong-collision rate, to

aE, the exact rate a (RT-4-). Agreement can be obtained by assigning

(de-facto) RT Z 0.5 Re. The underlying reason becomes apparent from Fig. 6.

The exact probability PAE that (El=0) dissociated pairs ultimately associate

dominates the probability for ultimate redissociation (after bound levels

are formed) for smaller RT < Re e2 /kT, so that PAE and the strong-collision
ST Re

probability PS (from (72) with Pf S 1) are essentially equal. Pairs with

larger RT >> Re are however mainly redissociated (Fig. 6). The strong

collision rate at RT - 0.45 is then twice the rate a(RT) of (72). The

remaining coi.tribution from R _> RT to the exact rate provides agreement with

the strong collision rates.J(43
1

The concept of the above loose reaction cemplex Is useful in showing
[2 3 ]

with the aid of (70) that the variation of recombination with gas density

yields the familiar result

aRM aTR

a(N) (73)

aR3TR
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where aTR(N), the known rate for transport of pairs by diffusional-drift to
N-1

within separation RT, decreases as N. The reaction rate a N by collision

with M within R ( RT increases initially linearly with N and saturates at

higher N (- I atm). The magnitude and density variation of (73), with

accompanying theoretical procedures, agree with Monte-Carlo Computer

Simulations for the recombination of rare gas-halide systems. [4'6 ] No

benchmark measurements are available, but the two historical measurements at

low and high N respectively in general agree[17] with (73).

6.2 Electron-Ion: The trapping radius concept is also useful to obtain

classical rates (i.e., (72) with P 1) not only for termolecular

recombination (64) but also for electron and neutral stabilized electron-ion

0

collisional recombination (9) and (7) respectively. The frequency vi(R) f
V(R)

V if(R)dE for formation of bound pairs is v12(R)u N, where v12 is the speed of

A ++B- relative motion and a is the cross section for AB -M deactivating

collisions. On assuming constant cross section a0 for such collisions, (72)

Sreduces (with P f 1) exactly to

co R
a NN [ dEi  i(R) v 12(RdRl(a ° N) (74)

0 0

(kT 112 4  3 3 Re

0 0

where R is e2 /kT. A classical version of the semiquantal bottleneck treat-e

ment (0 6.1.3 above) yields, a priori, the trapping radius to be Ro = 0.41 Re'

The rates a of termolecular recombination (64), and of e-e collisional

recombination (e + A+ + e) at electron temperature Te and electron density ne
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are therefore,

aTR(T) = 0.32 ReJ (o N) - 2.3 10 (300/T) 2 " N(cm3 s) (76)

and
kT -1/2[4 31 2 -020 (5 3s-1)(7

e(T) .32 3r R3 ( ITR 2 )n 2.7 10 (300/T) 4 5 n(c )(77)13 ej 9- e ee

respectively. In (77), co for electron-electron collisions is taken as the

1 23
Coulomb cross section ( rRe2) for energy changes > - MT. These expressions

provide the correct order of magnitude and temperature dependence, and, in

general, agree with experiment. In particular (76) agrees with the expression

of Mansbach and Keck [ 48 ] derived from more elaborate analysis. At higher Te

and lower ne, the highly excited levels collisionally formed within kT of the

ionization limit become increasingly stabilized by radiative transitions.

The resulting rate for collisional-radiative recombinatlon can then be

approximated as
[49'

aCRz [3.8 10-9 Te 4 ne 1.55 10-10  e-0.63 + 6 10-9 Te-2.98 n 0 3? 33-1

(78)

where the first term is (77), the second term is the radiative correction and

the third term arises from collisional-radiative coupling. This expression

agrees with the experimental datat 491 to within 10% for a Lyman optically

thick plasma with ne and Te in the range 109 < ne (cm"3) < 101 3 and

2.50 < Te (°K) < 4000K.

For termolecular (e + A* + B) collisional recombination only a small

fraction 6 = 2m/MB can be transferred in e-B elastic collisions so that the
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E -integration in (74) must be so rest,"-ted to give

kT1/2 r{ 6/r 1
aeB(Te) : 4wR 3 (a N) r2dr (1+ - ) ee-d6 (79)

0 0

with R = r Re and E = Ei/kT. Hence

8k- e- 1/2 2 (0 O 26/ c2.5I

B (T) e 4w1 ReR ° e N) - [10 /M(ANU)] (300/T. 2 5 N (80)

which agrees exactly with the diffusion result of Pitaevskii [5 0 ] and which is

linear 5 1] in the trapping radius R . This result (-10- 28 cm3 s-1 ) is in

general agreement with experimental data for (e + He+ + Cs) but is much

smaller than that (- 10- 26 ) for (e + He+ + He), which proceeds far more

effectively [52] via formation of an intermediate complex He2 which then

dissociates into neutral fragments.

The rate for (e + A+ + B) is greatly increased [5 1 for a molecular gas B

where energy reductions are effected mainly by rotational and vibrational

transitions. Allowance for the discreteness of (e-A+) Rydberg levels reduces

aeM and produces a sharper decrease with temperature.[53 ] When A is a

molecular ion XY+ a dissociative recombination channel opens. Here the

(e-XY+ ) pairs formed in highly excited Rydberg molecular levels XY by

collision with M, in addition to being collisionally and radiatively quenched

to stable bound states of AB, may predissociate along repulsive curves X +Y

i.e., by dissociative recombination involving bound electrons - the second

half of the indirect mechanism. 43 ] The contribution from this colltslonal

dtssociative recombinatton 5 3 ] can dominate the contribution from direct

collisional relaxation. That quantal curve-crossing is involved makes it
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similar to the enhancement [(6 ] of mutual neutralization (A++B -) by third

bodies. In the limit of high gas density N, the recombination rate aeM

becomes transport limited, as in (73) for ion-ion recombination and decreases

as N" I . Because of the higher electron mobilities, its onset however occurs

at much higher N. Between the linear low density region and the transport

limited N-1 region only Monte Carlo simulations have been performed.[(5 4 ] For

(e ++ + M) recombination in a molecular gas the rotational and vibrational

cross sections of Takayanagi [5 5 ] and of Takayanagi and Itikawa [ 56 1 and the

recommended molecular constants 56 ] are invaluable.
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Figure Captions

Figure 1. Schematic representation of potential energy curves for dissocia-

tive z:combination, e + AB+ -# AI + B, (a) via the direct (vertical

transition) mechanism and (b) via the indirect (Rydberg) mechanism.

Figure 2. Schematic Diagram of energy blocks 4, I and !f pertinent to

recombination at low gas densities.

Figure 3. Stabilization probabilities: (E): quasi-steady-state
[4 3 ]

(V2): two-parameter Variational. [44 (D): Diffusion.J45
1

N A

Figure 4. (A+ + B- + M) partial recombination rates i-] a(a) normalized to

Thomson's rate aT(a) as a function of mass parameter a = MBMg

/MA(MA +MB +Mg9) for various (A+-M) or (B--H) interactions (CX:

symmetrical resonance charge transfer; HS: hard-sphere; POL:

polarization attraction). The full rates are a(a)aT(a) +

a(b)aT(b) where b = (NA/MB) 2 a and where Thomson's rate is

a(a) 4 W R 3 (3 kT/MA) 1/2 0AmN. (Ref. 43.)

SFigure 5. Variation of a(RT), eq. (72) with Pf = 1, to exact rate, eq. (72)

with RT -4 (, for ion-ion recombination of equal-mass species

under various (A+-N) interactions (cf. Fig. 4).

Figure 6. Probability for eventual association and re-dissociation of (A+-B - )

pairs with zero internal energy. PAE and P RD: exact association

and redissociation. P3 T : strong collision. The probabilities are

normalized to Thomson's low density probability PT = RT (AM N).

(Ref. 43).
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ELECTRON COLLISION CROSS SECTIONS INVOLVING EXCITED STATES

£. J. Mansky

School of Physics
Georgia Institute of Technology
Atlanta, Georgia 30332-0430 U.S.A.

Knowledge of the integral cross sections for the electron-impact
excitation of atoms initially in a metastable state is of fundamental
importance not only in determining the number densities of atoms in various
excited states, but also in understanding the overall collision dynamics of
energy transfer and excited-state diagnostics in partially ionized gases.
Recently, the study of transitions between metastable states of He has been

revitalized by experimental measurmeents at Kaiserslautern (Muller-Fiedler
et al. 1984) of the differential cross sections, and at Madison (Rail et23

al. 1989) of the integral cross sections for the 233 - 33L electronic

excitations in helium. This signals a new era in experiments involving
metastable states in that such more detailed information can now be
obtained by modern measurements than was possible in the pioneering work of
Phelps (1955). This has also marked a resurgence in theoretical activity
in this area as well with recent distorted wave calculations (Mathur et
al., 1987) and optical potential calculations (Vu3i6 et al. 1987). In this
note we will briefly summrize the original multichannel elkonal theory of
Flannery and McCann (1974a,b,o, 1975a,b), together with the correction
needed to account for the influence that distant trajectories have on the
scattering amplitude for states dipole-coupled via an optically-allowed
transition to the initial state (Mansky and Flannery 1989a). In

particular, attention will be focused on the results for the 235 - 3 3L
transitions in He due to the recent experimental data which has becom
available.

The basic expression in the multichannel eikonal theory (MET) for the
complex scattering amlitude for the transition I - n is (Flannery and
McCann 1975a,o)

f n(0) a -(i) A+1 fJq'P [ A(q) 7 i 12 (p,i(e))p dp (1)

0

where the integrals II and 12 are defined,

r



aC n(P,z)
l(p,-(6)) J dz Kn(p,z) exp[ (ex )z]I (2a)

i2P e)= dz [K n (Kn-kn) + T2VnnlCn( p,z) expt(iYe))z] (2b)

The other terms Ln equations (1) and (2) are: q' = kn sinO; t(6) kn

(1-cost); A a rl-mn, where mi(.n) is the magnetic quantum number of state

2 2 2
i(n); J. is an ordinary Bessel function of order A; Kn k2

- g Vnn. The

complex amplitude functions Cn(p,z) in equation (2) are solutions of the
following set of coupled first-order partial differential equations,

2 dCn(pz) -h2 N
K* n -- z nnn nn]n VC exp[i(k -k )z] (3)

P- n - +(- Knc-kn)+.V Cn(p'z) I. njji j
j: 1

which are solved subject to the asymptotic boundary condition condition,
Cn(ptz***-) = n for the N states in the basis set (n z1, 2, .. ., N). For
definitions Of the remaining term in equations (1-3) and a complete
derivation of these equations see the original MET papers Of Flannery anid
McCann (19711a,b,c, 1975a,b).

The main assumptions made in the derivation of (3) is that the
trajectory for the relative motion of the electron in channel n is
accurately characterized by a straight-line, and that the contribution of
exchange to the inelastic Integral cross section for channel n is
negligible. The assumption of a straight-line trajectory for the relative
motion of the projectile electron in ea- + Al collisions should be reliable
due to the dominant nature of the long range part of the project ile- target
electrostatic Interaction in these collisions. However, In heavy particle
collisions account must be taken of the curvature of the trajectory in
order for accurate inelasti. integral cross sections to be obtained. This
has been done within the Wf for applications in heavy particle collisions
by McCann and Flannery (1976,1978).

Similarly, in electrom-metastable atom collisions the neglect of
electron exchange effects shoculd not introduce a great deal of error (Vu~ic'
et al. 1987). This is due to the increased siZe Of the target atom when
the Incident state is an exalted state. Recall that for hydrogen (Bethe
and Salpeter 1977), the meep value of r, the electron-nucleus distance,
scales with n as, <r> [3CUR - 1(1+1)1/2Z. This increase results in a
concomitant decrease in the electronic charge density p(r) of the target
atom, which results in & lowering of the probability of overlap of the
projectile electron's weveflinction with that of the bound electron, thereby
decreasing the importance of electron exchange when compared to the case of
scattering from ground state targets (i.e., target atom Initially in the
ground state).

In actual calculations the coupled PDE's (3) are solved over a finite
2-dimensional grid: 0 <p 1 pmsx -' a z < mx The subsequent
p-integration in (1) is then from p 0 to p p me, Typical values of

2
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zmax for ground state targets is 100-120 ao, while for metastable targets
(i.e., target atoms initially in a metastable state) 2M IX ranges from

250-300 ao . The typical values of P.,, range from 11 to 35 ac for ground

state targets, while for metastable targets the corresponding range is from
48 to 207 ao . These ranges on zmax and pma, refer to 10-channel elkonal

theory results for hydrogen and helium (Mansky and Flannery 1989a,b).
While the above values of zmas and pmax for ground state targets is

sufficient to insure convergence of the inelastic integral cros section to
the corresponding Born value at high energy, in the case of metastable
targets this is not the case. The contribution that trajectories, with
impact parameters p in the range pmax < p < -, make to the scattering

amplitude for metastable transitions (e.g., 23 S 3 3L, L a S,P,D) is not
negligible at high energies. This is particularly true of metastable
states dipole-coupled to the initial state via an optically-allowed
transition. The correction to the scattering amplitude needed to account
for these distant trajectories is given by (Iansky and Flannery 1989a),

fr ) = I-af J&(q'P)[I(P"7) - i 12(p,-V)]p dp +fn (0)
0

=f(MET%) t (dipole)0
nE ( + fin e (e), dipole-coupled transitions (4a)

f(MET)(e
= nT (0 , all other transitions (4b)

where,

(dipole) r *i -() 
a ( (

fni (0) = M~) -J(,),.(l 215ni2~ ,2 =,2 [ AJ&+ x 1)&( I) 2J&(2) & i. x211

and r a -(i) a, a ()-a, a = .Ae nY A (ki+ku), dni = Vl11 dni,

with dni denoting the dipole moment for the transition i - n, and x, a
q'pmax, x2 * aeez. The eigenenergies of the target atom are denoted en,
while K() is a modified Bessel function of order a.

In this note the dipole correction (5) has been applied only to the
235 23Po,. I and 23S - 3

3Po,+1 (A : 0,1) transitions within a 9-channel
basis (23S, 23P 33S, 33Po,_+ and 33D ,+1,t2). The present multi-

channel eikonal theory results for these transitions are hereafter denoted
DIET. However, to avoid confusion with Flannery and McCann's (1975)
original MET results, the present results for the remaining triplet transi-
tions will also be denoted DIET (with equations (4a) and (Jb) in mind this
should cause little confusion).

In figure 1 the present DIET results for the differential cross sec-

tions for the 23S -# 23P and 23 S 3L (L S,P,D) transitions at E = 20 eV

3
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are coWred with the experimetal data of Nuller-Fedler at il. (1984),
the original 1ET results of Flannery and McCann (1975b) and (where avail-

able) the distorted-wave (DW) results of Mathur et al. (1987). The present

DM results for the 2 
3S 333 and 23S -o 33D optically-forbidden transi-

tions are clearly in excellent agreement with the experimental data. In

particular, the agreement of the DWRT results with experiment for the

farmer transition is a direct resuit of the improved numerical solution of

(3) used in the present results copared to that used in the originl lET

results. For the optically allowed 233 4 23p and 23S - 33P transitions,
the present DMET results are seen to be underestimating the experimental

data of Muler-Fiedler et al. This 13 also the case with the original MET

results and the DI results. Interestingly however, all three theoretical

results predict the existence of a deep diffractive minimum at about 12? in

the 2'3 - 3'P OCS. No such behavior is seen however in the experimental
data, leading one to question the theoretical remlts. While the DY
results of Mathur et al. (1987) includes electron exchange within the

primary, 23S - 33P, transition (with no couplings to other states), both
the original MR results and the present DIET results neglect exchange but

include couplings up to the 33 D state. These points, taken together with
the DCS experimental data tor the nz4 triplet states (of. Table 1), seem to
indicate that the major physical mechanim missing from the theoretical
results shown in figure 1 is coupling to the n--1 triplet states of helium.

At least both dipole (23S . 43 p) and quadrupole (2 3S .13 , 43 D) couplings
should be included In a theoretical caloulation in light of the relative
magnitudes observed In the Kaiserelautern experiment between the DCS for

the 33 P state and the n=A triplet states.

TABLE 1. Experimental Differential Cross Sections for e.+He(2 3 S n3L)2

(Vao/str.) (iler-Fiedlr et al. 1984).

9 23P 333 33 P 331 433.43p, 3 D4 3p

10 300 41.9 5 25 10
15 85 1.4 1.9 10 6
20 , 26 .99 2.1 4 1.6
25 7.5 .60 .78 1.7 .78
30 2.8 .38 .58 .3T .50
35 1.6
40 .82

The DMET integral cross sections for the 23P and 33 L (L=3,P,D) states
are compared in figure 2 with the Born results of Flannery et al. (1975),
the original MET results of Flannery and McCann (1975b) and (where
available) the distorted-wave results of Kathur et al. (1987). Also, for

the 23P and 33S states, the 5-state R-matrix results of Fon et al. (1981)
and the Glauber theory results of Khayrallah et al. (1978) are shown,
respectively. The above theoretical results are compared in figure 2 with

the recent experimental data of Rail et al. (1989) for the 333, 3 3 p and 3 3 D

states. In the case of the 333 and the 330 states the experimental results
are absolute apparent cross sections, so a direct coparison with theory
will require the subtraction of' the cascade contribution from the apparent

measurements. Only the 33 P results of Rall et al. (1989) are direct
measurments. These were determined from the optical cross sections for
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the 23P and 33P and Einstein A coefficients (see Rail at al. (1989) far
details). Clearly, further theoretical work will be required in order to
convert the remininig apparent cross section measuremnts af Rail et a1. to

- direct cross sections. However, the measurements at Rail et al. do confirm
the basic trend, seen in both the MET and DHL"T, at the optically-forbidden

23S . 3 3D cross section being larger than the optically-allowed 23 S -. 3 P
cross section in the intermediate energy region.
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THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

IN ATOMIC SCATTERING THEORY

E. J. Mansky
School of Physics

Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

The numerical solution of coupled partial and ordinary differ-
ential equations in electron-atom scattering theory are compared.
In particular, a case study is made of the transition H(Is -
2s,2p) excited by electrons in the intermediate energy region.
The results of the multichannel elkonal theory (MET) and the
close coupling theory (CC) for this transition are compared and
contrasted with experiment and each other. The principle conclu-
sion is that the configuration space and angular momentum repre-
sentations employed by the two theories provides information
about the excitation process which is complementary. Speci-
fically, the contrasting differences between the MET and CC
results at small and large scattering angles for the modulus and
phase angle of the complex scattering amplitudes f ni() sheds new
light on the computational problems that need to be solved in
order for the A, R and I problem to be resolved.

I. INTRODUCTION

In this lecture the numerical solution of partial differential

equations in electron-atom scattering theory will be discussed and

contrasted with the problem of solving ordinary differential equations in

scattering theory. In particular, the results obtained by the multi-

channel eikonal and close coupling theories for the electron impact exci-

tation of hydrogen will be examined in detail. In Section II the partial

differential equations of the multichannel elkonal theory are presented

together with the ordinary differential equations of the close coupling

theory. The advantages and limitations inherent in the representations

employed by both theories is also discussed. In addition, the paralleli-



zability of the algorithms used in the numerical solution of the PDE's

and the ODE's if the two theories is discussed in Section II. Section

III contains a discussion of the results of the two theories for the

integral and differential cross sections and the complex scattering

amplitudes for the electron impact excitation of hydrogen. The con-

clusions are presented in Section IV together with a list of general

references.

II. THEORY

Here we are concerned with the scattering of a structureless

projectile B at a distance A from a target atom A with electronic coor-

dinate r. In this case, the time-independent Schrodinger equation is,

I1 =EIi* (1)

where the Hamiltonian operator i is given by,

12 2 *

n 2 2 2 V v ( )

2'H AB m r AB Ae + VBe

-*CM +1' (2c)

In equation (2a) the first three terms on the right-hand side of the

equation are the kinetic energy operators for the indicated particles,

while in equations (2b,c) the separation into center-of-mass (CM) and

relative motion terms are shown. As is well known, the separability of

the CM and relative motion terms in this case allows one to write the

system wavefunction * as a product of a plane wave with a wavefunction

*1 for the relative motion of projectile B in the field of force of

target A. The target atom A in the present case is assumed to be

hydrogenic, generalization to other cases is straightforward. The Masses

2



in (2b) are defined as m = me(mA+mB)/m T , 1 mAmB/(mA+mB) and mT = mA+ mB

+ m.
e

Therefore, Schrodinger's equation (1) now becomes,

I'. = E (3)

To solve (3) one generally expands the wavefunction Pi in a sum over

eigenstates X n of the target A,

'Pi F n(rA) ( B (4)

Ln AB n AB'
n

where F is the (unknown) wavefunction for the relative motion of projec-
n

tile B a distance rAB from target A (in channel n). In this lecture we

are primarily concerned with contrasting the numerical solution of PDE's

and ODE's in atomic scattering theory and hence the expansion given by

(4) will be sufficient. However, if one is interested in resolving the

spin structure of the target atom A, or the resonances in the cross

section near threshold, additional terms (antisymmetrization, correla-

tion, etc.) need to be added to (4). These additional terms will

ultimately result in a larger set of coupled equations to be solved, but

will not change in a material way our basic discussion of the numerical

solution of coupled partial and ordinary differential equations in

electron-atom scattering. References to calculations which do include

the above effects are given in Section III.

Substitution of (4) into (3) results in the following set of

coupled ordinary differential equations,

2 n2kn2n Fn Vn AB)FE

2' AB Fn Y n -VnnFn
m

t,22
T m ) + 2 V F ' )  52 [Fm(  VABFm n AB

m

3



where the prime on the summation sign indicates omission of the term n:m,

and the inner froduct (f,g) is defined.

(f,g) = t r)g dF

To convert (5) into a set of PDE's, write Fn(rAB) An(rAB) exp(iS n(AB'
2 2 2

and note that r AB p + z with p,z,# the usual cylindrical coordinates

centered at A. This yields the following set of equations,

2 +2 A An  A + 2 2 2A

An VAB n VAB AB n A AB A n +VAS An (kn - Vnn) An An

VmA m A i S AmAM (6)

m Fm

with An s exp(i Sn(rAB)] and Anm a (n' a m). After writing the

gradient and Laplacian operators in (6) in terms of cylindrical coordi-

nates, the coupled Hamilton-Jacobi partial differential equations are
-0

solved for the amplitude functions An(r AB). In these equations the

eikonal phase Sn(r AB) is assumed to be known exactly. To obtain an

equation for Sn set the term inside the curly brackets in (6) equal to

zero,

2 k 2  2p
VAS n( AB + ( n - Vnn) An(rA) 0 (7)

where the Vnm in (6) are the instantaneous electrostatic interaction
n-m

between the projectile and target i.e., V V M(rAS) = (n'

V( ABhI )m) . Defining the local wavenumber Kn(AB) a k n - (2pA 2) Vnn

and writing the Laplacian In (7) in spherical coordinates yields,

a a iSn(rAB) ASB 2 ISn(rAB)

rABAeJ+y-
rA r2A S .eAS
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s (Sn)2 2
-~~S '- (S n 0 (8)

n n

where the primes denote differentiation with respect to r and LA2 is
AB AB

the eigenvalue of the relative angular momentum operator CAB 2 1h/i) rAB

2 2 2 2
SVB The 'frequency' w is defined, Ufn (LAB/rAB) + K . Here we arex AB' nh nreABecyB n

interested in electron-atom collisions where the relative motion of the

electron to a good approximation is a straight line. That is, we assume

that the eikonal phase factor S n(r AB) is a slowly varying function of

rAB; or, equivalently, that the density of the classical ensemble of

particles varies sufficiently slowly along the classical trajectory such
2

that S" - 0, and the LAB term in (8) can be ignored. In this case, the
n

real part of (8) is integrated to give,

S (rAB)a S (pz) 2kz + ' (k 2 21 V (pz')j 1/2-k]dz' (9)

In the case of heavy particle collisions the curvature of the trajectory

of the projectile must be included in the eikonal phase. An example of

this type of calculation, for ion-molecule collisions, is the work of

McCann and Flannery (26,271. With the choice of (9) for the eikonal

phase the coupled equations (6) are independent of An on the left-hand-

side. In order to further simplify these 2nd-order partial differential
2

equations for An, we in addition assume that the term VAB An is small and

that the eigenstates X n are independent of rAB. The latter condition

insures that the second summation on the RHS of (6) vanishes and is con-

sistent with our omission of electron correlation effects in the wave-

function expansion. These terms become important when there is signifi-

cant configuration mixing in the target atom.

With the above approximations, the coupled equations (6) reduce

to a set of first-order partial differential equations,

5



8 C n(p,z)

1 Kk CC exp[i(kj-k)zn --KI 5 z n -K(n- n) nn]Cn : VnJ Cjep/ -n)z] (10)

J

where An(P,z) C (p,z) e exp(-i (Knkn)dZ'}, and A - m

These equations are solved subject to the boundary condition C n(p,-)

= 6 n. The coupled equations (10) are the basis of the multichannel

eikonal theory (MET) of Flannery and McCann [11-161. The three principal

advantages of the semiclassical equations (10) are:

(i) The equations are first-order in z, hence the numerical tech-

niques used for ordinary differential equations can be used

to solve (10). This also means that no matrix diagonaliza-

tion needs to be done in the numerical solution of (10), as

is the case with 2nd-order ODE's.

(ii) The second variable p (the projectile's impact parameter)

appears in (10) only as a parameter. This indicates that the

coupled PDE's (10) will be readily parallelizable. While no

calculations have yet been performed with (10) solved on a

parallelizable machine, when this is done, a great deal of
time should be saved. This Is important since the numerical

solution of (10) is the principle bottleneck in the MET

calculations.

(iII) The memory and time required to solve (10) is a linear func-

tion of the number of elgenstates Yn used in the basis set

(4). This is in contrast to the case of 2nd-order ODE's

where the time required for the matrix diagonalization is a

cubic function of the number of elements in the matrix to be

diagonalized. This in turn is a result of the direct methods

used for the matrix diagonalization, and hence represents a

major hurdle to the use of large basis sets in the solution

of 2nd-order ODE's. The ultimate reason behind the diffi-

culty in using large basis sets In solving 2nd-order ODE's by

matrix techniques lies in the use of an angular momentum

representation for the wavefunctions Fn rather than a

6



coordinate (i.e., configuration space) representation.

The main disadvantage of solving the 1st-order partial differential

equations (10) is the fact that they must be solved over a 2-dimensional

grid rather than a one-dimensional grid as is necessary in the solution

of 2nd-order ODE's. A consequence of this is that the memory require-

ments are an order of magnitude larger for the former calculation as

compared to the latter.

The close coupling 2nd-order ODE's which arise from using an

angular momentum representation for Fn(rAB) in (4), are,

d2  Pe(ei+1 ) 2Z

r- - 2 1) k AB

AB rAB rAB

2 I Vij(rAB) Fj(rAB) + f WiJ(rAB r') F (rl)drI

J1 0

+ "nt Pn (rAB ) bt fi (11)
nP

where ei is the orbital angular momentum quantum number of the projectile

electron in state i, and the X(i) Lagrange mltipliers chosen suchnI are Lgag utpir hsnsc

that the target orbitals P are orthogonal to the F The matrix

elements Vij are the same as those defined previously, while the Wij are
the electrostatic matrix elements arising from inclusion of electron

exchange (i.e., antisymmetrization) terms and correlation terms in the

wavefunction expansion (4). The close coupling equations (11) are well

known in the literature, hence their derivation need not be repeated

here. However, attention is drawn to the following papers and reviews

for those interested in further details (2,5-7,291.

Technically, the close coupling equations (11) are Fredholm

ordinary integro-differential equations which, using the technique of

Marriott (251, can be cast in the form of a larger set of purely ordinary

differential equations. Then, after discretization of the Laplacian in

(11), the problem is converted into one of matrix diagonalization.
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The advantage of using the close coupling equations (11) is that

very accurate ihelastic cross sections can be obtained close to threshold

- especially the resonance structure between the inelastic threshold and

the threshold for ionization. However, as the energy crosses the ioni-

zacton threshold (where the number of open channels becomes infinite), or

in the case of transitions between excited states, the close coupling

equations (11) become increasingly difficult to solve via matrix

techniques due to the large number of basis states and partial waves e1
required for convergence. This problem can partly be alleviated through

the use of pseudo-states. Another way around the bot' -neck of basis set

size in the solution of (11) is through the use of multi-tasking on the

CRAY-XMP. Important recent work in this regard is that of Sawey et al.

(301. Clearly further work on the numerical solution of (11), both by

matrix diagonalization techniques and by solving the equivalent partial

differential equations, is needed.

In this lecture we are interested in contrasting the numerical

solutions of the coupled PDE's (10) with the ODE's (11). Hence we will

only discuss the techniques used to solve numerically the PDE's (10), the

techniques used to solve the close coupling equations (11) having been

thoroughly described in (2,5,71. In particular we will end Section II

with a brief review of extrapolation methods used to solve 1st-order

ordinary differential equations. A more complete discussion of the

numerical solution of (10) including Runge-Kutta and predictor-corrector

methods will be given in a forthcoming paper [22].

Extrapolation methods for ODE's

Consider the 1st-order ODE, dy(t)/dt = F(t,y(t)). When this is

integrated for sufficiently small step sizes h, the solution of y(t+h)

can be written as a power series in h,

m

y(t+h) 2 y(t) +- T ri(t)hi + (hm+l) (13)

i:1

The goal of extrapolation methods is to eliminate the power series in h

in (13) above by integrating the differential equation for a sequence of
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step sizes ho,h1 ,...,hm, and then extrapolating the results to h - 0.

That is, the power series 2 Ti(t)h is approximated by functions R m(t,h.)
Iii

which have m+1 unknowns. These unknowns are determined by the condition

Rm(t,hj) = y(t+h ), j = 0,1,..., m. Hence the solution of the ODE y(t) is

approximated by Rm(tO).

The two principle extrapolation methods are by polynomials and by

rational functions. In polynomial extrapolation the function R m(t,h i )

R W)(h) is an mth degree polynomial in h and is computed recursively by,
m

R (i+1) - R W

R(i) R(i+1) + -1 M-

m m (hih i+m)-1

In rational function extrapolation the R(i) = P (h)/Q (h) where P (h) and
In i m

Qr(h) are polynomials in h of degree p and u, respectively. The R (i) (h)

are computed in this case recursively via

R() 0, R(i) (t+h

R(i ) : 
( i+ I)  m-1 m-1

m m-1 (i+) R(i)
2 1 m-1 m-1

iim2 R- i+1 Rni1

m-1 m-2

The MET results discussed in Section III were obtained by solving the

coupled 1st-order PDE's (10) using Bulirsch and Stoer's [4] method of

rational extrapolation for ODE's. A full discussion of extrapolation

techniques can be gound in Gear (171 and Dahlquist and BJorck [101.

III. RESULTS

Before comparing the MET results obtained by solving the PDE's

(10) with the close coupling equations (11) a short discussion on the

practical numerical methods used to solve (10) are in order. To do this

we quote the final expression used in the multichannel eikonal theory for

9



the complex scattering amplitude for the transition I -n,

fi .(0) n ( An(q1p) [I(po(O)) - 1 12(p, ,(O)) pdP (14)

0

where the integrals 11 and 12 are defined,

WC n(Pz)

I (p,7) = dz Kn(p,Z) -7 exp[i7()z] (15a)

-O

a,

I2 (PO,-) = dz [K (Kn-k) + VnC (p,z) exp[i(O)zj (15b)

and refer the reader to the original literature [12,13,161 for the

details. In equations (14,15) q' = kn sine and 1(0) = kn(l-cosO) and Ain

= mi - mn . The 1st-order PDE's (10) are solved using Burlisch and

Stoer's rational extrapolation technique for ODE's over a finite

2-dimensional grid: o < p _ Pmax' - Zmax < z < Zma x for the amplitude

functions Cn(pZ). The values of Pmax and zmax are varied until the

cross section,

a IC(p )2 pdp (16)J Inlzmax)

0

is computed to within a tolerence e (i.e., until subsequent evaluations

change by less than an amount e (%)). An additional criterion for the

selection of optimal values of pmax and zmax is that the MET integral

cross section, computed from the scattering amplitude (14) should

converge to the 1st Born approximation at high incident energies. For

this to be achieved it was found necessary to solve (20) using a non-

linear grid in z in order that the rapid variation of Cn and OC n/z near

z z 0 be accurately represented. This was needed so that the subsequent

evaluations of 11, 12 were accurate. The nonlinear grid in z used was:

10



z i =,3 tan(ib),_i = -N N...,Nz with 6 = tan- (z max/3)/Nz . However, since

11 and 12 must be evaluated numerically from the tabulated solution of

the coupled equations (10), the most efficient way of solving (10) is to

make the grid points zi used to solve (10) and the pivots used in the

evaluation of 1, 12 identical. This avoids the need to interpolate

w.r.t. z in the quadrature of 11 and 12 (interpolation w.r.t. p must

still be done however). In the MET calculations discussed below, inte-

grals I1, 12 were evaluated using Simpson. 'ule with the nonlinear

pivots zi chosen above and with weights s)i = rib sec2 (i), where ri are

the usual Simpson's rule weights and Nz is the number of points used to

discretize the z-range o,z max]. Hence while the number of points

required for at. accurate evaluation of I1, 12 is much larger using

Simpson's rule as compared with using a higher-order luadrature method,

the amount of time saved by eliminating the need to interpolate w.r.t. z

more than makes up for the increased number of grid/ pivot points zi

required.

In figure 1 the real and imaginary parts of the amplitude

function Cn (p,z) for the Is state of hydrogen are shown as an example of

the type of behavior exhibited by the solutions of equation (10). For a

more extensive exhibition of the solutions of the semiclassical equations

(10) see (221.

In the remainder of Section III an overview of the MET results

for e'+H collisions will be given. This will include differential and

integral cross sections as well as the complex scattering amplitudes.

For a complete update and discussion of the present MET see Mansky and

Flannery [23,241. It should be clear that by comparing the results

obtained for a wide range of physical observables, from the solution of

equations (10) and (11), one not only gets an idea of the success or

failure of a particular theory over a wider range of physical conditions,

but also insight into the accuracy of the numerical solution of the

coupled equations underlying a given theory. That is, by varying Zmax

and pmax in the semiclassical equations (10) until the integral cross

sections computed from (14), for all states in the basis set, have

11
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Figure 1: Real and imaginary parts of the MET amplitude function

C13(P,z) versus z(a0 ) for e'+H collisions at E = 54.40 eV.

converged to their corresponding 1st Born approximation values in the

limit of high energy, one obtains an idea of the minimum size 2-

dimensional grid required to solve the coupled PDE's (10). These values

of pmax,' zmax can then be used to solve (10) for all other energies of

interest. Note that a similar argument can be made about the numerical

solution of the coupled ODE's (11) where the appropriate parameters are

rmax and em X - the maximum value of the independent variable rAB and the

largest partial wave fi retained in t-i expansion.

The MET differential and integral cross sections are defined as,

kn
a n( 0) : Ifni~el (17a)

2w ir 'I

a d I sine de n (0) z 2J j an(0) sin(O)d (17b)

0 0 0

where the complex scattering amplitude for the transition i - n is given

by (14). In figures 2,3 the integral and differential cross sections for

12



-0 4

10'-

a b

2
Figure 2a: Integral cross section a2p in units of rao2 versus E (eV.).

1st Born (- - -), MET [231 ( ), 3-state close coupling [18]
( --- ), DWSBA (20] (X), AVCC-18 state [9] (*), unitarized
Born [31] (+), experimental data of Long et al. [21] as re-
normalized by Bransden and McDowell [3] (0), experimental
data of Long et al. [21] as renormalized by van Wyngaarden
and Walters [34] (0), experimental data of Williams [321 (A).

Figure 2b: Same as Fig. 2a except with AVCC-11 state (. ) [8].

e-+H(ls -# 2p) collisions are shown (results for other transitions in

hydrogen are given in (23]). The MET results are in good overall agree-

ment with experiment in figure 2, and clearly converge to the Born cross

section at high energy. In particular, the agreement (of. figure 2b)

with the absolute measurement of Williams [32] at 54.40 eV is noteworthy.

The differences between the original algebraic variational close coupling

results of Callaway [8], and the same results as renormalized by van

Wyngaarden and Walters [34], is a choice of normalization (i.e., normali-

zation to experiment at 11 eV versus the pseudostate close coupling

calculations of van Wyngaarden and Walters [35] at 350 eV). On the other

hand, the differences between the 3-state close coupling results of

Kingston, Fon and Burke [18] (cf. figure 2a) and the MET results is an

indication of the lack of convergence w.r.t. basis set size in the former

calculation. The importance of basis set size is evident in comparing

the 3-state close coupling results of Kingston, Fon and Burke and the

18-state AVCC results of Callaway et al. (9) (cf. figure 2b). While the

MET results are in good agreement with the results of Callaway et al. for

energies E > 70 eV, the differences observed in figure 2 at lower

energies is due to the neglect of electron exchange terms in the MET.

This is also eviden, in figure 3 by the rapid decrease of the MET

13



differential cross sections a 2 s(0), a2p(a) at scattering angles 0 > 400

when compared to the close coupling results of Kingston, Fon and Burke

[181 and van Wyngaarden and Walters [34]. The agreement between the MET

and the experimental data of Williams [32] for 0 < 200 in figure 3 also

indicates that the choices for zrax and P in the solution of (10) were

correct.

From figure 3 one would conclude that electron exchange effects

are only important at large scattering angles. This is incorrect. While

a definitive calculation has not yet been done, the ongoing problem of

theory to reproduce the experimental data for the X, R and I parameters

indicates that theory is still not handling adequately the numerical

solution of the coupled equations (10) or (11). In figure 4 we show the

X, R and I parameters for e +H(ls - 2p) collisions at E = 54.40 eV and

scattering angles 6 < 500. Clearly the MET results accurately reproduce

the experimental data of Williams [32] only for e < 200, while at the

level of a2p(() the corresponding angular range was < 400. In con-

trast, the two close coupling results shown in figure 4 are in good

agreement with experiment out to approximately 400. However, at larger

scattering angles (8 > 600) the close coupling results fail to reproduce

the second experimental minimum in the X parameter observed around 1000

and the magnitude of the R parameter in the range 700 < 6 < 1200. These

facts taken together indicate that while the values of Zmax, Pmax used to

solve (10) in the MET are adequate at the level of differential and

integral cross sections, the small z behavior of the amplitude functions

still needs refinement for physical observables directly dependent on the

complex scattering amplitude fni(6). For completeness, the X, R and I

parameters are defined,

X= Ifol2 /[Jf 012 + 21 I l2] (18a)

R = VXT-X)/2 cos(P1 - Pc)  (18b)

I = ?(1-X)/2] uin(P1 - Pc) (18o)
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Figure 3: Differential cross sections a2s (), a2p(O) in a0
2 /str. vs. 0

for E = 54.40 eV. MET (231 (_), 3-state close coupling [18]
(---), pseudostate close coupling [351 ( ---- ), experimental
data of Williams [23] 0 (via sum), [] via ratio).

where f,(O) = If(e)1 exp[im(e)] and fo(0) denotes the complex scatter-

ing amplitude for 2pm magnetic substate. For a complete discussion of

the angular correlation and polarization correlation parameters in

electron-atom scattering see Andersen et al. (1]. For more on the prob-

lem of the A, R and I parameters in e-+H collisions see Morgan (281.

To better understand what part of the solution of the PDE's (10)

needs improvement, in regards to the X, R and I problem discussed above,

and where the electron exchange terms in (11) become important, we show

the MET results for the scattering amplitudes f2 po () and f2p,(0) at E

54.40 eV in figures 5 and 6, respectively. These are compared in figures

5,6 with the close coupling results of Kingston, Liew and Burke [19].

Two things are evident in these figures. First, that the electron

exchange terms in the close coupling equations (11) manifest themselves

quite differently in the modulus and phase angle of the scattering.

amplitude. For example, the phase angles for the singlet and triplet

spin channels for the f2p (0) scattering amplitude differ from each other

appreciably for 0 ) 300, while for the f2Pl(9) they don't begin to differ

greatly until 6 _ 400. On the other hand, the modulii for the singlet

15



and triplet spin channels of the f2po (), f2p, () scattering amplitudes

00
only differ appreciably for 6 < 200, 6 < 300, respectively. That is,

electron exchange terms are important at small scattering angles for the

moduli of scattering amplitudes, while for the corresponding phase

angles, they are important only at large scattering angles. This

indicates that unraveling the relative contributions that direct and

exchange terms make to a given scattering amplitude at a specific angle

will be difficult.

The second point to note from figure 5 is that the MET results

for the f2p0 () amplitude agrees quite closely at all angles with the

triplet spin channel results of Kingston, Liew and Burke. On the other

hand in figure 6 the MET results only agree with the singlet spin channel

results over a limited angular range. In particular the MET results

exceed both the singlet and triplet spin channel results for If2p,(9)I

0.8'

0.6

" 0.4 .

02 ' -

0 10 20 iO 40 50

0.4 -- -T ,,,, r,, ,-,0.4

O3 . 02

002

0.0 2 -02

-O L. -L. I -0.4
0 0 0 40 50 0 10 20 30 40 50

Figure 4: A, R and I parameters for the 2p state at E = 54.40 eV. MET
[23] (_), 3 state close coupling [18] (---), pseudostate
close coupling [35] (- ), experimental data of" Williams
[32,33) 0 (A, R from [32], I from [33]).
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for 0 < 2o. Note that we should not expect to see the MET results in

figures 5,6 lying between the singlet and triplet spin channel results of

Kingston, Liew and Burke. Rather, the observed behavior of the modulii

and phase angles of the MET scattering amplitudes in figures 5,6 is a

direct result )f a complicated interplay between the z-behavior of the

amplitude functions Cn(pz) and eikonal phases Sn (p,z). A detailed

discussion of these topics is beyond the scope of this lecture, but will

be the subject of a forthcoming paper.

IV. CONCLUSIONS AND GENERAL REFERENCES

In this lecture we have contrasted solving coupled PDE's with

ODE's in electron-atom collision theory. The principle conclusion of

this lecture is that the solutions of (10) and (11) are complementary.

That is, the configuration space representation employed by the MET, and

the angular momentum representation employed by close coupling theories,

complement one another, both in terms of information they provide about

the scattering event, and in the energy ranges over which they are valid.

This is important since it means that by solving (10) and (11) one gains

additional insight into a particular excitation process that would not be

obtained otherwise. This p-oved useful for example in the discussion of

8 32 1

6

2

0 L -32L - L-,
0 0 20 30 q0 50 60 0 10 20 30 40 50 60

9 6

Figure 5: Modulus IfoI (in a0 ) and phase angle 130 (in radians) for

f 2p(e) vs. 8 for E 54.40 eV. MET [231 (_), 3 state close
coupling (19] 0 (singlet) 0 (triplet).
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0 10 20 0O , O 60. 0 10 20 30 0 50 60
~0

Figure 6: Same as Fig. 5 except for f2p 1().

the A, R and I problem in Section III. We end this lecture with a short

list of general references which we have found useful on the subject of

coupled ordinary and partial differential equations.

- Collatz, L., 1960, The Numerical Treatment of Differential Equations

3rd ed., Springer-Verlag.

- Dahlquist, G., 1956, Math. Scandinavica 4 33-50, 1959, Trans. Roy.

Inst. Tech., Stockholm, No. 130.

- Dahlquist, G., and Bjorck, A., 1974, Numerical Methods, Prentice Hall.

- Gear, C. W., 1971, Numerical Initial Value Problems in Ordering

Differential Equations, Prentice-Hall.

- Henrici, P., 1962, Discrete Variable Methods for Ordinary Differential

Equations, Wiley.

- Ince, E. L., 1956, Ordinary Differential Equations, Dover.

- Olver, P. J., 1986, Applications of Lie Groups to Differential

Equations, Springer-Verlag.
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ITERATIVE SOLUTION OF LARGE LINEAR SYSTEMS AND HEAVY PARTICLE COLLISIONS:

ION- ION RECOMBINATION

E. J. Mansky
School of Physics

Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

The solution of large sparse linear systems of algebraic equa-
tions arising from the discretization of coupled Boltzmann par-
tial integro-differential equations, which model ion-ion
recombination processes in dense gases, is discussed. The
advantages and limitations af various representations of these
equations is provided. A detailed analysis is given of the
derivation and structure of the coefficient matrix s of the
resultant algebraic equations. The need for preconditioning the
algebraic equations through the calculation of the condition
number of the matrix A is highlighted. Approximate methods of
computing termolecular recombination rate coefficients via the
Debye-Smoluchowski equation and diffusion models in energy space
are also briefly discussed.

I. INTRODUCTION

In this lecture the numerical solution of large sets of linear

algebraic equations by iterative methods will be discussed with parti-

cular application to problems in heavy particle collisions. The physical

problem specifically addressed is that of ion-ion recombination at

arbitrary gas densities. The determination of the rate of recombination

is governed by the solution of a pair of coupled Boltzmann-like integro-

differential equations (IDE's). The derivation of these coupled

Boltzmann equations from a more basic perspective involving the BBGKY

hierarchy of equations is reviewed in Section II. The solution of these

coupled IDE's provides a general framework for discussing the problem of

computing chemical reaction rates in dense plasmas. This is provided in
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Section II along with a detailed discussion of the advantages and limita-

tions'of transrorming the IDE's into a set composed solely of differen-

tial equations (DE's) or integral equations (IE's). In all three repre-

sentations the problem of numerically solving the coupled Boltzmann

equations reduces to one of solving a set of simultaneous linear alge-

braic equations composed of a large, sparse, real, positive definite,

non-symmetric, ill-conditioned matrix. The solution of these algebraic

equations by iterative techniques is highlighted in Section II.

Historically, until the advent of supercomputers, the direct

solution of the coupled Boltzmann equations was generally avoided through
ne use of simplifying approximations because of the difficulty in solv-

ing large sets of algebraic equations. In Section III the link between

the coupled Boltzmann equations and it's approximations is given. In

particular the formulation of the problem in terms of diffusion equations

(in energy space) and Debye-Smoluchowski equations is accentuated in

Section III. The conclusions of this lecture and a list of general

references is given in Section IV.

II. BOLTZHANN EQUATION TREATMENT OF IONIC RECOMBINATION

The overall goal of the type of calculations described in this

lecture is the prediction from a microscopic viewpoint, of the rate of

chemical reactions in dense gases. The proto-type chemical reaction we

are primarily interested in is that of ion-ion recombination at arbitrary

gas densities,

* + - + Z a [XY] + Z (1)

whereby free ions (X+,Y - ) are converted into diatomic molecules XY

(usually in 30me metastable state denoted by f). We will assume that the

number density of third bodies Z is arbitrary, but that the free ion

number densities is sufficiently low so that the interaction potential

between ions is strictly Coulombic. This will necessarily exclude from

discussion dynamic screening effects in dense plasmas. We will also not

discuss the related problem of ion-atom association,

2



X ++ +Z - (XY] + +z

which is an important mechanism by which molecular ions are formed in

interstellar media and in laboratory plasmas. To solve both problems

from a microscopic standpoint will require a great deal of information on

the full three-body sector of phase space which is beyond the scope of

this lecture to provide. Anyway, before the latter two problems can be

solved, a complete understanding of the solution of the terolecular

recombination rate in the limit of low ionic density and arbitrary gas

density will be needed.

We are interested in computing in this lecture microscopic reac-

tion rates which the reader should take to mean that the reaction rates

will be expressed in terms of the phase space distribution functions fN

for the N particles comprising the three component plaua (positively and

negatively charged particles as well as autral species) undergoing

termolecular recombination. Our starting point is the BBGY hierarchy of

equations,

afs

5t -Isfs + n-s fs+1 s = 1,2,3,...,N-1 (2)

which is a set of coupled equations for the s-particle reduced

distribution functions f3 f5(x1 1x2 t...x;t) =(Ns) f dx 1 J dxs 2

. dx N fN(x1,...,xN;t) with V denoting the total volume of phase space

and xi:(ri, i) denotes the 6-dimensional phase space point for particle

i. In equation (2), the Hamiltonian operator for s particles of equal

mass m is defined,

-p .i I

+ E)28i (3)Is m r, m Pi ij•w 3

izl 14i<j,<s

where is the external force on particle i, and the interaction

operator between particles i and J, is
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S - " "- w(4)
PiJ oa.i J

with the interaction potential between particles i and j denoted #iJ"

The phase-mixing operator 4.' in the B3GKY equations (2) is defined,

S

s dx 0 (5)J s+1 i's+1i= 1

and the number density n in (2) is n = N/V. For a detailed derivation of

the BBGKY hierarchy (2) the reader is referred to the statistical

mechanical literature (Akhiezer et al. [11, Balescu [3,4], Chapman and

Cowling (131, Ferziger and Kaper [181 and Tolman [41]).

Since in ionic recombination we are interested in the formation

of diatomic molecules, it is natural to assume that the most important

reduced distribution functions in the three component plasna are those

for one and two particles. Hence we will truncate the BBGKY hierarchy of

equations at f3 and concentrate on the equations for fl, f 2 . Also, since

we are interested only in the recombination of positively and negatively

charged particles to form neutral diatomic molecules, it follows that the

main determining factor in computing a, the rate of reaction (1) will be

the pair correlation function g(+-) between X and Y. From this we

conclude that a separate BBGKY hierarchy (2) will be required for each

component of the plasma. These hierarchies for the three component

plasma are,

1 z-- 1  1  12 1 2 1 2
F(n) ,(n) f(n) +(n+) (n+) .(n-) f(n-) + (nn)f(nn) (6c)

- 1 1 1 2 1 2 1 2
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- ++ f ++ (++e) f (i+++) + *1(++-, (++- ,+n . +n (7a)
?2 2 .2 t 3 2 3 2 3

( - #t+ '' ( * (-)f(-)+ (-) +- + I(-)(n) (7b)
2 2 f2 ~ 2 3 2 3 2 3
?( n) _( n) (+n) ,(.n+) r(+n+) , ( n-) (.n-) .(+nn) ( nn)

2 2 f2 21 3 +12 f3 + 2 f3(7

2 2 2 2 3 2 3 2 3
((-n)f(-n) + ,(-n+) f(-n+) +(-n-)f(-n-) (-n) (-nn) (
2 - 2 2 2 3 2 3 12 3  (e
(nn) - (nn)f(nn) ,,(nn+) f(nn+) .A(nn-) .(nn-) (nnn) f(nnn)
2 -'2 2 2 3 2 3 2 + 3  (7f)

where the superscripts , -, n indicates a positively or negatively

charged particle or a neutral species, respectively, and the dots

indicate differentiation w.r.t. time.

The set of coupled equations (6,7) are closed by use of the

cluster expansion (Ferziger and Kaper [18]) wherein the 3 particle

distributions f3 are written as functionals of the 1 and 2-particle

distribution functions. The latter functions are written in turn as

functionals of 1 thereby closing the set of equations (6,7). For a

detailed derivation of these equations see Mansky [351 and Flannery and

Manaky (281. Since we are primarily interested in the numerical aspects

of the problem of computing ionic recombination rates a in this lecture,

we will omit the details of the subsequent reduction of the coupled

equations (6,7) to the working equations (8), but refer the reader to the

above two references as well as two earlier important papers of

Flannery's [24,251.

Therefore, after reduction, the final steady state working

equations are

- a r *- + - 2A[p(r,)-p-(r,A)1 =' J p(r,A)F(A,M.;r)dp

+ ~ I1/r

, - (r,, r'J p-(r,p)F(\,p;r)dsA

- re p (r,A)5(r,A) (8b)

5



p+(rA)1/r

- r P, p+(rdsj)F(X,s;r)dWs

- r' p(r,A)S(r,A) (8c)

ap (r X 1 1-1/r
- - I r, r - 2Aj(p (r,X)-p (r,X)1 I p(r,p)F(AP;r)dP

- t, p (r,X)5(r,X) (8d)

1
where equations (8a,b) are valid for region I: -- < A F and (8c,d)

1 1

are valid for region II: X <F (see figure 1). The functions

P( )(r,A) represented the number density of ion-pairs expanding (+) and

contracting (-) at a given relative separation r and internal energy A in

phase space. The p's are just the ratio of the number density of

ion-pairs undergoing recombination to the equilibrium number density

(i.e., p()(r,A) = n(-)(r,A)/n eq). The working equations (8) are written
in terms of dimensionless natural variables which are defined,

r = r12 /Re, A -Ei/kT, p =Ef/kT

2 -A mrwhere Re = e2/kT andF' a e - A , r = - fo,p mfp

(N(Z)Q) -1. Hence the dependence on gas density in (8) is contained in

the constant r, which also depends on the masses via,

1[(lc)/c] /2  , charge transfer

o  (1+a) 2/a3 /2  , hard sphere

V" (1+a) 5/2 /a 3/2 , polarization

and,

1/r
I(r,A) a f F(,,p;r)dp
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Sregion

4

er ion L

Figure 1: Illustration of X, r phase space domain of equation (8).

The detailed formulae for the energy-change rate coefficients F(?.,p;r)

for the energy transfer mechanisms of charge-transfer, hard sphere and

polarization collisions need not concern us here, but can be found in the

original literature Flannery [21-231 and Flannery and Nansky [27]). In

the definition of r the mass ratio parameters are defined,

a m2m3/m1 (m1 +m2+M 3)

C M1/M2

where m20 m2 and m3 are the masses of X , Y" and Z, respectively.

The functions p(r,N) are not completely determined by the working

equations (8) until their associated boundary conditions are specified,
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1 (9a)

I for X < 0 (9b)

p+(r~o,N) p-(r:o,X) (9c)
1 1

) + (r,) p"(r,-) (9d)
r r

Before we convert the working equations (8) into a set of practical,

numerical equations we will discuss the relative computational merits of

transforming the integro-differential equations (8) into equivalent

differential equations or integral equations.

Technically, the working equations (8) are coupled Volterra partial

integro-differential equations (PIDE's). They are 1St-order in r and

1-dimensional in A meaning that the highest derivative in r appearing in

(8) is the first, while only single integrals w.r.t. X appear. To

convert (8) into a set of PDE's define the functions t(r,X) by

1 8 (r,X)

p±(r,X) =F(,X;r) o (10)

yielding,

a 1i OP(r,X) r r X -+r,\ p(rA)
(-A) Tr AF~,Xr +N ) F(Mj,X;r) OX rL -\ OX I

1(r,A) +(r,X) 1
+ F(i,X;r) oX r'[p+(r, . (11a)

___ (rA)1  %(r,A) op(r,X) 1
r (,t;r) X J + F(p,X;r) OX r

(11b)

1 0  r 1 O(rX) 5(r,A) 0 (r,) 1

()) + P(, ;x) OX ' P
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dr- F(a;r) x P+r F(x;r) ax F(p,X;r) O ax

(lid)
r

Performing the indicated differentiation w.r.t. r and rearranging terms

results in the following set of coupled hyperbolic 2nd-order partial

differential equations,

IT I a d2 (r,.) ] r'J(r,-) 1 p()rA)
F(p,x\;r) (3r A (F(px,;r))2  F(ii,x;r) ONa

F(,~xr) ax r'p (r,-) - (r,--)] (12a)F(p,,\;r) aA

"4jlr- x] !2 -(r,x) r',(r,x) -'x]F'(.'x;r) a-(r,x)

F(i;',) ara + [ F,x,;r7) +  (F(, , r))2  ] ax"

1ar'[(r,F) - -r,-()] 112b1

IT, -xJa 2 (r,x) r (r,A) 0'- ( r]'1xr a~rX
F(u,x;r) Or& [(M" ) - (F(px,;r)) ]  aax

1

- (r,--)] (12c)
r

1 1 1

-) a2;-~x ~ - 2A1 (F- F'(IA,x;r) r'rx)jPr)

Flit,h;r) dIra +[ F(p,x;r) + (F(,X, ;r)) F,;r) x

9



1 1

2X) (,A
r - , p(r,,) p (r,-Wfl (12d)
-F(,,-;r) r

with the boundary conditions at the turning 
point (X =/r) and in the

continuum (A - --) incorporated into the RHS of 
(12). Equations (12a,b)

are valid only in region I, while 
(12c,d) are valid only in region 

II.

Note that primes on F(p,X;r) in 
(12) denote differentiation w.r.t. r, 

ind

that F(p,X;r) = F(Xp;r).

To convert (8) into an analogous set 
of coupled integral equa-

tions, define the functions p±(r,A) by,

r
p+(r,X) =I (, )d  (13)

0

yielding,

1 1 1 --

l - )I+(r,,) - p(o,,)1 ( - 2A,) [(rP,,) - (r,, ,)dr'

0

/r 
r

F1 J diF(Ni;r) r (r', )dr' - r, T(r,X) IP+ (r,,\)drl (13a)

- ~ 0 0

1/r r
1

-(-~ ?jlp(rA- p~o~)] r' dpi(?Xsi;r) I pr'idr
0

r

- r,'(r,x)I -(r',X)dr' (13b)

0

/r r

- ?)(P(r, A) - p'(o,N)1 r' J dp F(G,It;r) IP(r',W)dr'

-~ 0

r

- ' (r,X) IP (r',A)dr' (13c)

0
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r

1 1 1( -
.(;; )[p(r, ') - p'(o, )1 - - )-- - 2Xl J 1p(r,M --- r,)]r

hr r r
1 r, r

r' dp F(,,;r) tP (r', p)dr' - r, ;(r,,\) X~r'dr' (13d)

0 
0

Rearranging terms in (13) to show the couplings present 
between the

integral equations gives,

r

(- X) p (r,M) r( -- 2; ) + F' (r,MI) p' (rX)dr'

r r r 0jP
0

1/r r 1 1 r

p 11dp FU(,,;r) Jf -(r' ,j~dr' - -(-2Xf

0 Prr 0 1

(- -\)p (o,\ (14a)

r

- (r - ) p-(r,') + r' $(r,M) j-(r',, dr'
l/r

(;-x) +(, ) r r,X) f -(r',X)d'

0

h/r r

J dp F((,I.L;r) IJ p+(rA)dr (- k) P(oX) (14b)

0

r

. p- ) (r,) (r " 2' r' +rr '

ro

0

itr r 1

0 0
- r djiFU~j~i~) r - ( -r -X) -p(o,? (14dc)

1 1r

- I~ p-,? - 2X. + r, ,W(rM X)fj (l,)r

0

il Ir F(?h.u~r) I P-(r',I)dr' -2X Ip+(r',XMdrt

~.M0 0

X ?) P (o,?) (14d)



where the boundary condition at r = o has been incorporated into the RHS

of (14). The Three representations .of the coupled Boltzmann equations

(equations (8), (12) and (14)) all require the same number of quadratures

to obtain a solution - namely two each for p+(r,X) and p-(r,A). However,

our reason for giving the details of the transformation between represen-

tations (cf. equations (10), (13)) is to highlight the different types of

boundary conditions required in each case. In the case of the PDE's

(12), it is clear from (10) :nat the required boundary conditions on

p±(r,A) should be global in energy and local in r, while in the case of

(14) the boundary conditions on pt (r,X) should be local in energy and

global in r. We use the word global to indicate that the integrand of an

integral w.r.t. the specified degree of freedom is required as a boundary

condition. Otherwise it is called a local boundary condition (e.g.,

equation (9) is local in both r and A). Therefore, from (10) and (13) it

is clear that the boundary conditions for the PDE and IE representations

are of a mixed nature, and will be difficult to implement numerically.

It should be clear however that in all three cases (eqs. (8), (12) and

(14)), after discretization, the basic problem numerically is the same -

namely one of solving a set of simulataneous algebraic equations for the

PIDE representation (8) (these are the practical equations mentioned

earlier), and leave it to the reader to write down the corresponding sets

of equations for the other representations (12), (14).

Numerical Solution of PIDE's

To convert the coupled PIDE's (8) into algebraic equations, four

steps need to be taken:

(M) Replace all derivatives with finite differences. If the PIDE is

part of an initial value problem, the choice of either forward

or backward differences will depend on the boundary conditions.

(ii) Replace all integrals with quadrature sums. The choice of quad-

rature rule is crucial in determining the overall stability and

convergence rate of the resulting algorithm. The type of quad-

rature rule chosen in turn depends on the global behavior of the

12



integrand over all of phase space. Hence, for a multidimensional

kernal, this step can easily be the most time consuming one in

preparing for the full solution.

(iii) Impose all boundary conditions on the algebraic equations

resulting from steps (i) and (ii,. Make sure that the boundary

conditions used lead to a well-posed problem with a non-singular

coefficient matrix.

(iv) Finally, choose a technique for solving the resultant set of

algebraic equations which takes advantage as much as possible of

the structure of the coefficient matrix. Compute the condition

number of the coefficient matrix and determine whether the alge-

braic equations need preconditioning.

Therefore, discretizing r -+ ri z [o,rl,r 2,. .rma x  = rN r with Nr

+ I equally spaced points (step size h), and replacing integrals with

quadrature sums (with weight functions #k) yields the following for (8),

+ +

Ti 2h ' ij~~'lj - Pij) + lrl5 r k FjkiPk 0

k
(15a)

-T i+1, j~-i ,j +-_F P 1b
-Tij 2h ij - rj L k FjkiPik 0 (15b)

k

[l++llj-P+.1,J ]I

[ti+ij'~Pu ,4.
Tr' 5 4  -F' F + (15c)-i2h-ij ij L k jkipik-

k

1 +j-pi-ij

iT1  2h -IijIP i r' AijPij -j #~k Fikipik 0

k
(15d)

where r a r e J, FJkl z F(ljJik;ri), 5 ='(ril'j) ' 6 - -
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1 1 1

1,9 1 iA'1,Ti , n denotes +(,\

It will prove convenient to rearrange equations (15) into the

order (15a,c), followed by (15b,d), so that the resultant coefficient

matrix is positive definite (Golub and van Loan [301). Then applying the

boundary conditions on r yields,

- 2h r~~ljk lli ]
-( 1-6 o)T jp*. , -r ' + rj* j1 5 p-k

10 iji - 2h ii k, jjkli +pikjj j li, i

k1

- 2h 1- I F + 2 h1 ( 1-6i )p +J1 k 2 J1k 21 Pik 2 2h '.li1 Oiil ("N r)i+l'J1

k 2

6 top+(rzo, J,) + 6 + ( , ) (16a)

-(I-1 rT 2h 1

( t iJ2P i -J2 2 kkJ 1

-{ 2h i°)Ti i - '- 2h r'12J2 21Fj 2 l P + + 1( & )

k22

4iop (rzo, J2 + biNrp (rmax,XJ) (16c)

k14



(1-6i )TijPiJ 2h 1'i 2 P J2 - 2h % r' ,F k1i ik,

- 2h ~ ,*F. 6 (~ + 1- iN )P

k k k2 )]~~kiPikl i

L J2 k2 j2 k2 ' k2 j2
( 'iJ2  -2 J2J 2  r(lb1Jk 2

- 6o p-(r:oA2 + N rP-(r Max, XJ2) (16d)

and where the indices are defined: 1 < i <_ N r-1, -Nc < J1 
< Nb I l Nb 1

1

J2 - Nb and -Nc < k, _ N- Nbl -b k2  Nb The energy range (--, -]
1 2* r

1 1 1
has been discretized into three grids: [-Amax,o], [0, -i-, [ri , r

composed of N 1, and Nb - Nb points, respectively. The

total number of points in the energy grid is Nc + N Hence the

subscripts J 1 , k, indicate that the energy is restricted to region I:

1
--A , while J2, k2 indicate that the energy is restricted tomax' 1r2

1 1
region II: [-7' -1] The parameter Aa represents the largest free2r.Ir max
ion energy considered. More details on the energy grid are given below.

Now, before applying the boundary conditions on X (equations

9a,d)), a word is needed on continuity conditions. In equation (8) the

X,r phase space is divided into 2 regions. Since we assume that the

unknowns p±(r,A) are smooth functions of A and r, we must insure that the

computed solutions of (16) are continuous across the boundary between

regions I and II. We do this by recognizing that (16a,b) are 2 equations

for the same unknown when J, = J2 = Nb . Therefore, we can add the two

equations together and divide by 2. This insures that we will not have

an overdetermined system of equations. In the case where JI and J2 don't

equal Nb , the appropriate terms from the k1 and k2 summations (i.e., the

15



last in k and the first in k2) must be added together in (16a,b). These

two steps will insure that p(r,X) is continuous at A = 1/2r. Analogous

additions in equations (16c,d) will likewise insure that p-(r,X) will be

continuous at A = 1/2r. Therefore, applying the steps above to insure

continuity in the solution, and the boundary conditions on X yields the

following set of practical algebraic equations,

1 1

p(- )T A (i+(i)+ + W+'' +i.
L Z J1k 1  Pikj'Nl L I k2 )2

I i i

k 1 k 2

(i . (1-6 ) + - (i) +  (17a)ij ij+ i i.'j210 kPk ik

l k Pik 1  2JNb jikb2  Pikk2

1-6iN )p +l'J1l (17c)

1 1 2

( 6i)i ii, -2h _j (i)- -ik ,-
2 lc Jk I  J2Nbl iNbl

- , (i)-k Pi- ""J2 : (i)-(7d
P- (1-6i )P-~ A( 02 (17d)

-22 1k2 iNr i 2 Jk 2

where the coefficient matrix A and column vector I are defined as,
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2h r k1  F jjkli - (k.J4(iJ1  + r ITija)
Jl kl h ,-j

()+ = 2h r * F . (18b)
Ij Ik2 2  jlk2 i

(i)+ = 2h U * (18c)

J2kl J2  kl  j 2 k l i

(i)+ = 2h[I 1 F. k i :i' l (18d)

J2 2k2  [ J2 2  J2  2 k2J2  J2  1J

im i 2h * FI 6kJI I (18e)

'(0- =2h * F (18f)

j lk2  1 k2  k2 1

A (i)- 2h # Fk F (18g)

J2kl r2 1 j2 kli

Ak F k - 2hr'I1.6 + 1'3 5 (18h)~ ) J2 k 2 h r 2  J2 k2i 6k 2J2(l'J21 + 2 iJ2)

and,

1(0)+ b p + + 6 p+(r X + 6Nbk 2 2h FJlNbii
. °P m(r ° 'JJ )N k J iP iNb

p +, 2h[1 1 *_. F A -Njl"ij + ' I )] (19a)5 kl-Ne~iN 2h[r 1 *-Ne FlNei 
6-NcJlil Jl %

M + ( + +j.oj +2 ) + 2hrI2jNJ+22_NP1 ..N: i)+=bop ro 2 iNr (P x 6klN ONei~-

J2  J2rJ -0 2 cJ

+ 6k N 2 N [2h r' F N 26 (19b)
2b 2 b2 JA 2  k2 J2 J2
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()-= ioP'(Z=o, J ) . sin P'(rmaX, ) * Nb~k2 
2 hF~JlbFj1MbiPiNb

- + ] 2h+rl

k -N Fl-Nei 6 k J (19c)
1i c N 'c ji N c JJ ii iJ 1 J

,i 6. p-(r=o,\ ). 6 p-(r ) + 6 2h2_FNP
J2 = i  J iN r max"J 2  k1-N0  12#N 0 J2 -N.iN c

+6 2hl'i- 2  -(P P_,b
J2Nb2 'J2 ,Nb 2 i,Nb

6 k2Nb 2h% Nb2 FJ2N b2i 
6k2J2  J2 5 iJ2 ]piNb (19d)

The elements of the coefficient matrix A which govern the continuity of
+

the solutions p- at the boundary between regions I and II are denoted by

e in (17) and are defined,

C(iN- = 4h F - %N 2hr' (20a)Jlb 1  rll#b1 JlNbi 5lb 1  Fl 1 (2a

N(i )+  = 4h P 2#N 2 i (20b)
J2 N b F J2 b1J2Nb I 

i

S( )"  = h Nb4h 1 F b - bj 2h rI" j , (20c)
JlNbl J1 1 1

()- = 4h r N (20d)J2Nbl J2 NblJ2 bl1

The index i in (17) is defined as before, while in (17a,c) J1 is defined:

-N Nb , and in (17b,d) j2 is defined: N + j N -1 The
Sb Nbb

2
primes on the k 1 and k 2 summtions in (17) denote that the X boundary

terms are omitted (i.e., k1 z -Na and k2  Nb2). The primes also

18



indicate that the terms with k1 = Nb and k2 = Nb have been factored-out

of the summnation (and are represented by the -C terms).

The algebraic equations (17) can be written in the familiar

matrix notation,

.. P (21)

where A and A are given by (18,19), respectively, and p is the unknown

column vector composed of the discretized elements of p first, then p-.

The known column vector 1, composed of boundary conditions on p-, has

been written in full detail in (19) in order to show exactly how each

boundary condition contributes to the problem. In practice, after

application of (9), (19) will simplify considerably. From (18) it is

clear that the coefficient matrix 54 is non-symmetric due to the presence

of the *4ij and 1 terms. The overall structure of the coefficient

matrix is shown in figure 2.

The energy grid chosen was nonlinear due to the skew discontinuity

present in the kernals F(X,p;r) (Flannery (22,231). In particular, we

use the 3tan(u) prescription of Bates and Mendal [8] for the pivot points

used in the Simpson's rule quadratures in (17). That is, the weights and

pivots used in the energy quadratures are defined for the three grids as,

Xk = 3tan(kf), *k = rk f sec 2(kg)

with,

(i) continuum part of region I: -A m A < 0 -N < k < 0max - - - -

= tan-l (max/ 3 )/Nc

1 k =-N a, 0

rk = 4 k even integer in (-Nc,O)

2 , k odd integer in (-Nc 0)

19



J.%

Figure 2: Structure of coefficient matrix AE in equation (21). a) blockc
trn-diagonal in r, b) non-symmetric, positive-definite in A.

1
(ii) bound state part of region 1: 0 < A < - 0 < k < Nb

tan- -1/ 6 J/N b

-k 0, N b

r k 4 k even integer in (0,N b

L2 kc odd integer in (0,N b

and,
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1 1

(iii) region II: <- X < N b k < N

A k = 3tan[min + (k-Nb ) ] k = rk f sec 2[min + (k-Nb )f]

fmin = tan-l(1/6r.) = (tan-(1/3ri) - tan- (1/6ri)]/(Nb2-Nbl)

1 , k Nb it Nb2

rk , k even integer in (Nb I

2 , k odd integer in (Nb ,Nb2)

Denoting the total number of points in the energy quadrature by N\ N +
C

N b2-2, and the total number of simultaneous equations In (21) by N =

(N r-1) 2 N = 2(N r-1)(N c+Nb2-2). A typical value for N is 20,988 for Nr

= 100, NO = 36 and Nb2 = 72. Hence, due to the very large sparse nature

of the coefficient matrix A, the use of direct techniques like Gaussian

elimination to solve (21) will be totally out of the question because of

the time and memory requirements involved. Therefore iterative

techniques like Lanczos algorithms (Cullum and Willoughby (15], Golub and

van Loan [30], accelerated successive overrelaxation methods (Young [42],

Hageman and Young [32]) and Tchebychev iteration (Manteuffel (36,37])

should be used to solve (21).

Consequently, before continuing our discussion of the solution of

(21), we will review some of the iterative techniques used to deal with

large linear systems. For readers interested in a complete treatment

consult the books listed in section IV - especially those by Young and

Hageman and Young.

Iterative Methods for Large Linear Systems

Solve the matrix equation Ax B where A is an N x N real, symme-

tric positive definite matrix, and x, B are column vectors of length N.

Decompose A into three parts: a) it's diagonal elements (D), (b) all

elements below the diagonal (CL) and (a) all elements above the diagonal
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(C). That is, we can write A = D - CL - Cu . Now, scale the problem so

the diagonal elements of the new coefficient matrix are 1. This can be

1/2
done by multiplying by D

(D-1/2 A D-1/2 )(D/2 x) = D- 1/ 2 b (22)

- 1/2(D - CL - Cu)D-1/2 D- 1/2 D D-1/2 -1 D'/2 CLD- 1/2 -1/2 Cu D-1/2

=I - L - Lt (23)

-I -B

-1/2 -112t
where I is the identity matrix and L a D CL D -  , B a L + L . Then,

D1/2 D-1/2
from (22), defining the column vectors u a D x, c a D b allows the

original problem to be case into the suggestive form,

u :B u + a (24)

which is then solved iteratively.

Two of the most widely used iterative methods are the Jacobi

method,

u(n 1) = B U(n) + c (25a)

and the Gauss-Seidel method,

u(n+1) L u(n+l) + Lt u(n) + O

I u(n ) . k (25b)

where k = (I - L)-I a, t (I-L) " 1 Lt and in (25) u(n  denotes the nth

iteration of u. More recently variants on the Gauss-Seidel method have

been developed to speed the oonvergenoe of the iteration procedure. One

of the variants Is the successive overrelaxation method (SOR),
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U(n
+ 1) (L u(n+ l) + Lt U( n ) 

. C) + (1 - W) U( n )

U (n) + k (25c)

..th 'T (I L) (w Lt  (1-)I), k c. The parameter (

is known as the acceleration parameter. When w = 1 (25c) reduces to the

Gauss-Siedel method (25b). A generalization of the SOR method involves 2

SOR sweeps for each iteration of u, and is called the symmetric succes-

sive overrelaxation method (SSOR),

(n+1/2) (n) (for.) (25d)u = IiU + kW(2d

(n..) = I U(n+1/2) . k(back.) (25e)

where the operator I is defined above, and 1t= (I - wL t)- (L + (1-)I)
and k(for.) = w(I - wL)-1 , k(back.) = (I - (4 t)-1 c. Equations

(25d,e) can be combined into one iteration step by defining the operator

u(n~l) = U(n ) k(2)
I u 2f

where k w (2-w)(I-wL t) (I-wL) "1 c.
In the SOR and SSOR methods one must choose an acceleration para-

meter w which will be optimal for a given coefficient matrix A. Two

widely used methods of acceleration are Chebyshev acceleration and

conjugate gradient acceleration. Writing the basic iteration procedure

(24) as u ( n l ) 'A u ( n ) + k, Chebyskev acceleration is defined,

u ( n + l )  Pn( 1  u ( u(n) + k) + (-i)u(n) + (1-Pn+ )u(n-1) (26a)

where Y 2/(2-M('j)-u('S)] and,
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Pn+l (1 - a/2)r1  , n s+

[1 - (a12)2 Pn1 , n > s+2

with a [M('0)-m('.;)]/[2 - M(')-m(A )], M(I) = maximum eigenvalue of matrix
-, m(') minimum eigenvalue of -4. The integer s is initially zero, then
increased as the adaptive procedure proceeds (Grimes et al. (31]). That
is, one can reassign the overrelaxation parameter p several times during
the iteration process. A disadvantage of Chebyshev acceleration is that
it requires estimates of the smallest and largest eigenvalues of I to be

made.

Conjugate gradient acceleration is defined,

(n ) (n) 6(n)
u Pn ( -n+l '  + (1un1 ) +  ( Pn+l) 6( -l  (26b)

6(n+1) = + -v~ . 6 (n) +(1 +) 6 (nl) + 0 Pn(0 n-i) (26c)

.(n) ~(n) (nwhere 6 (n) is a pseudo-residual vector given by: 5 = u + k -

(n)
u n

. The acceleration parameters p and 1 are defined,

1 ,n=O

1
Pn+1= ,n> 1

I 6 (n)t (W)t W 1( n )

L"n*n -(n-l)t Wt (n-1)

6 (n )t W t W 14 6 (n)  -1
n+1 6 W1"bnt w t W 6 (n) )_

where W is a nonsngular symetrization matrix. For the Jacobi method W

D 1 / 2 , while for the SSOR method W a (1/w) D 1/2(D - w CL) While the
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conjugate gradient acceleration method doesn't require estimation of the

elgevalues ofr', the number of arithmetic operations required for it's

implementation is greater.

We have necessarily been selective and brief in our discussion

of iterative methods due to the vastness of this area of linear algebra.

The discussion of this subsection is based upon appendix A in the

technical report of Grimes et al. (31]. Two excellent books which

provide good introductions to this area are Young [42] and Hageman and

Young (32] (others can be found in the list of general references in

section IV). As for software which implements the iterative techniques

discussed above (as well as others not discussed here), excellent

packages are the ITPACK library (Grimes et al. [31]) and the package of

Lanczos algorithms of Cullum and Willoughby (15].

So far we have only discussed iterative techniques for symmetric

coefficient matrices A4. However, the central numerical problem of this

lecture is to solve equation (21) for a large, sparse non-symmetric

matrix J. Unfortunately there is much less known in linear algebra about

iterative techniques for non-symmetric matrices. One way to handle

non-symmetric matrices J is to consider (instead of (21) for example) the

associated equation 4t.4P = 9dt, where Ad £4 is a symmetric coefficient

matrix. However, in many practical applications the condition number of

At d is much greater than that of1 d - thereby indicating that this

technique will not necessarily yield a problem which will converge

rapidly using one of the iterative techniques discussed above. Another

way to deal with non-symmetric problems is to develop the appropriate

generalizations of (25,26) directly (Young and Jea (43], Manteuffel

(36,37]). However, these generalizations require knowledge of the eigen-

value spectrum of -6 which is difficult to obtain in practice. In summary

then, while same progress has been made in linea, algebra towards

handling the non-symmetric case, much more work needs to be done in

devising criteria by which one can select acceleration parameters which

will be optimal for a given general coefficient matrix 1.

Returning now to our discussion of the numeri"-l solution of (21)

for non-symmetric ad, we will need to know the condition number K(Ad) for
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the coefficient matrix A, before using one of the iterative techniques

above. The condition number of a matrix of is defined: K(,4) = 11,1411 *

114- 111. Computing the condition number of the coefficient matrix in a

given problem (e.g., equation (21)) is necessary because the iterative

techniques discussed above (like SSOR) work best for well-conditioned

matrices (i.e., those with small K). Otherwise, the number of iterations

required for convergence will increase greatly, and since K provides a

measure of the sensitivity of a given problem to round-off errors and

perturbations, if K is too large for a given A, then iterative techniques

will not work due to accumulation of round-off errors. Physically, the

condition number of a matrix ,d provides a measure of the distance between

94 and the set of angular matrices. Hence, when K(A) is very large the

matrix .4 is considered ill-conditioned, which means that the numerical

solution u, of (24) say, will be very sensitive to round-off error which

are unavoidably accumulated during the iteration process. More details

about condition numbers in linear algebra can be found in Golub and van

Loan [30].

Using the routine LFCRG in the IMSL library (33] to estimate the

condition number K (si), via the algorithm of Cline et al. (141, of the

coefficient matrix of equation (17) we find that K I(4) = 4.20 1019

In contrast K 1 (sd) 1751.1 for the coefficient matrix sd resulting from

the discretization of the quasi-equilibrium integral equation (29). This

indicates that the condition number for the coefficient matrix of (17)

needs to be reduced approximately 16 orders of magnitude before the

iterative techniques (25,26) will become effective. This can be

accomplished either by row scaling (Golob and van Loan (30]) or pre-

conditioning (Faber and Manteuffel [17]) the coefficient matrix.

Unfortunately, these calculations have not been completed at the time

of writing but will be reported in a forthcoming paper (Flannery and

Mansky (281). Hence, it is still an open question whether the iterative

techniques discussed above are effective in solving (17). However our

discussion of the condition number Kj(sd) of d given by (18) has revealed

the underlying reason why the earlier work of [8], failed to converge

quickly as a function of gas density N(Z). Also, by illustrating the

structure of the coefficient matrix in figure 2 and equation (18), a
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deeper insight into the role the gas density plays in the nonlinear

pressure regime"is obtained. In fact once the problem of the

ill-condition of 4 is solved, a number of other problems in chemical

physics should become ameniable to the iterative techniques discussed in

this lecture including the prediction of microscopic three-body

ion-neutral association rates (Bates and McKibben [71), and the inclusion

of non-thermal effects into ion-ion recombination (Bates et al. (6]).

Before ending section 1I we wish to discuss the numerical solu-

tion of integral equations briefly. This is necessary because much of

the numerical analysis of PIDE's relies heavily upon the expertise gained

in solving related one-dimensional integral equations. The IE we will

use as an example will be the quasi-equilibrium integral equation arising

in ion-ion recombination. We will necessarily be brief since the numeri-

cal analysis of integral equations (even one-dimensional ones) is a vast

field and we only wish to highlight points about the numerical treatment

of IE's which are related to our earlier discussion of PIDE's. For a

complete discussion of the numerical treatment of IE's see Baker [2].

In discussing the quasi-equilibrium theory of ion-ion recombina-

tion it will prove useful to define the functions p S(r,X) and p D(r,X),

D 1
p (r,X) = [p+(r,X) - p-(r,X)] (27a)

1

p (r,X) = [p+(r,X) - p-(r,X)] (27b)

which describe physically the net and total numbers of ion pairs

undergoing recombination at a given relative separation r and internal

energy X. Substituting (27) into (8) yields two coupled PIDE's valid for
1

-< A <
-r

1 8pD(r,) 1 1 D 1/r
- Or r ( - 2A)p (rX) r' J pS(r,)F(X,, ;r)dp

- r' 5(r,A)p S(r,X) (28a)

27
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1 OpS(r,A) 1 1 1/r
- +r -F I- - 2IIp (rA) r' pD(r,)F(A,p,;r)dp

-m

- r' :;(r,)p D(r,A) (28b)

In the quasi-equilibrium theory the motion of the center of mass of the

ion pairs is taken to be in thermodynamic equilibrium with the third

bodies, while a quasi-equilibrium distribution in highly excited internal

energy states of the ion pairs is established effectively instantaneously

due to collisions with the much more numerous third bodies. In the

establishment of this distribution it is assumed that the distribution of

separations of ion pairs does not effect the quasi-equilibrium distribu-

tion in internal energy. That is, the r dependence of the distributions

p(r,), p-(rX) is not influenced by the recombination proceeding in the

plasma. Hence we can assume that the r-distributions of contracting and

expanding ion pairs is in thermodynamic equilibrium, thereby implying

that p D(r,X) = 0. This results in (28b) indicating that p S(r,A) is a

constant w.r.t. r. Multiplying (28a) by r2 and integrating w.r.t. r

yields the quasi-equilibrium integral equation for the distribution over
S

internal energy states pOE(A),

fF(X\,IppE() dA = P { A F(X\,p)dp (29)

where w is the maximum binding energy of an ion pair, and e is the

stabilization energy of an ion pair. We refer the reader to the original

literature (Bates and Moffett [121, Bates and Flannery (51, Bates and

Mendal [11], and Flannery (22,231) for the details.

Equation (29) is valid only in the low gas density limit where

the flow of contracting and expanding ion pairs balance, at higher gas

densities however a net contraction of ion pairs occurs so that the full

PIDE (8) must be solved. We quote the expression for the recombination

rate coefficient a for the low density limit from the original literature

cited above,
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: d. r M - p(p)] (30)
_LO 1)

where i -E/kT is an arbitrary energy level, and aT is the Thomson rate

coefficient (Thomson [401). From (30) it is clear that once IE (29) is
S

solved for the PQE(N), a bi-cubic spline quadrature will yield a.

To solve the quasi-equilibrium integral equation (29) we impose
s S

the boundary conditions: pQE(N _ o) 1, pQE(A > ) = 0 yielding,

0

pQS(p F(A,p)d - pQE() J F(A,I)dp, = F( ,\4)dp (31)

When (31) is discretized the result is a system of algebraic equations

similar to (21) which can be solved either by iterative methods (SSOR) or

direct techniques (Gaussian elimination), due to the much smaller size

coefficient matrix .4 in the quasi-equilibrium case. As an example of

the type of results obtained, we show in figures 3 and 4 the quasi-
S

equilibrium distribution pQE(M and recombination rate a/aT, respectively

for the energy-transfer mechanisms of charge-transfer, hard-sphere and

polarization collisions. We should also mention that, in addition to the

smaller size, the quasi-equilibrium coefficient matrix is also symmetric

- a fact which greatly helps in the numerical solution of (29). We have

not discussed the numerical solution of the PIDE (28) in the same detail

as that of (8), even though they are equivalent, because it results in a

system of algebraic equations with a non-symetric, nonpositive-definite

coefficient matrix d - a problem much more difficult than (17). Finally,

the quadrature rule used to determine the weights and pivots used in

solving the quasi-equilibrium integral equation (31) were the same

nonlinear Simpson's rule weights and pivots of Bates and Menda' [8]

discussed earlier. We conclude section II with a summary of the types of

IE's found in the literature.
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Figure 3: Quasi-equilibrium distribution function PQE(X) for the case

of a = 1/3 (m1=m 2 =m3 ), and energy-change mechanisms of charge-

transfer (CX), hard-sphere (HS) and polarization (PL) collisions.
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Figure 4: Quasi-Equilibrlum recombination rate coefficient (a/aT) versus

mass ratio parameter (a) for energy-change mechanisms of charge-
transfer (CX), hard-sphere (HS) and polarization (PL) collisions.
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Numerical Solution of IE's

The thrle basic types of integral equations are Fredholm

equations,

b

K(x,y)f(y)dy = g(x)f(x)

a

and Volterra equations of the first kind,

t

j K(t,s)f'(s)ds = g(t)

0

and second kind,

t

f(t) - I K(t,s)f(s)ds = g(t)

0

where g is a known function, f is the unknown function and K is the

kernal of the integral equation. We have already encountered Fredholm

equations and Volterra equations of the 2nd-kind in (29) and (8),

respectively. We will not encounter Volterra integral equations of the

1st-kind in this lecture. However, upon discretization, all three types

of IE's above reduce to a problem of solving a system of linear algebraic

equations. The particular technique used to solve the algebraic equa-

tions depends upon the structure of the coefficient matrix 91, which in

turn depends on the behavior of the kernal K. Recalling our steps in the

numerical solution of PIDE's, we find that steps (ii) - (iv) also provide

a good prescription for the numerical solution of one-dimensional IE's.

We have been brief in our summary of the numerical treatment of integral

equations due again to the breadth of the area. For a complete introduc-

tion to the numerical solution of IE's see Baker [21 and Delves and

Mohamed [161. For an excellent account of Volterra equations see Linz

(34 1.
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III. Approximate Treatments of Ionic Recombination

As statid in the introduction, until the advent of super-

computers, the direct solution of the PIDE's arising from the Boltzmann

equation treatment of ionic recombination, was generally avoided due to

the difficulty in solving systems of algebraic equations composed of 1000

or more equations and unknowns. The paper (Bates and Menda' [9]) which

originally derived the coupled PIDE's (8) solved them by a power series

expansion in Amfp. which converged slowly with gas density and whose

coefficients were difficult to compute in general. As discussed in

section II, the slow convergence rate of the power series solution of (8)

is directly related to the ill-conditioned nature of the coefficient

matrix 4 in (21). Hence other methods of solving for the recombination

rate a are needed. One such method which has proven quite successful is

the Monte Carlo simulation of ion-ion recombination processes (Bates and

Mendav [101, and Morgan et al. [381). We will not cover this type of

calculation in this lecture since our main interest is in discussing

techniques which lead to PDE's or PIDE's.

In this section we will discuss the Debye-Smoluchowski and

diffusion equation approaches to ionic recombination. The starting point

for the Debye-Smoluchowski equation is the macroscopic continuity

equation for the number density of ion pairs, undergoing recombination of

time t and separation R,

dn(g,t) an(l,t)

dt - +t = o (32)

for R > S a sink radius, and is solved subject to the asymptotic boundary

condition n(R . -,t) = N(X ) N(Y-) where N is the equilibrium number

density. The net current 1(1,t) of ion pairs expanding at time t is,

3(g,t) = -D ' n(A,t) , (K/e)(' V) n(g,t) (33)

where V(R) is the interaction potential between X+ and Y-, and D, K are
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the relative diffusion and mobility coefficients of X
+ and Y" in a back-

ground gas Z. The introduction of a sink, with an assigned local three-

body reaction rate a3 at the surface, allows one to avoid dealing with

the complicated collision kernels F(A,si;r) and full PIDE nature of (8) by

replacing the problem with a dnenomenological model. After substituting

the current (33) into (32), and discretizing, the problem reduces to a

boundary value problem involving a time-dependent diffusion equation in

R. An example of the resultant solution is given in figure 5 which shows

the time-dependent number density of ion pairs n(R,t) versus R for a

specified sink radius. For further details on the Debye-Smoluchowski

equation and ion-ion recombination see Flannery and Manaky (291.

[0
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0.5 . . .
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Figure 5: Solution of Debye-Smoluchowski equation for p = n(r,T)/NO

2
exp(-V/kT) r a R/S-1, T a Dt/S . T ranges (from the top curve
down) from 0.05, 0.5, 1, 2, 5, 10, 20, 30 to 100. The lowest
curve is the steady state (equilibrium) distribution. Assigned
parameters are S 0.5, a,/aTR 0.5 (see (291 for details).
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Diffusion equations in energy have also been used to model ionic

recombination Since the work of Pitaevskii [39]. In fact, the quasi-

equilibrium theory of ion-ion recombination discussed in section II can

be considered a Markov process (Flannery [19]). Writing the quasi-

equilibrium integral equation (29) in terms of energies E, Ei (with the

time-dependence reinserted - see Flannery 130], p. 17),

dn(E,t) r

Ot jNZ) n(E ,t) K(Ei,E)dEi - n(E,t) J K(E,Ei)dEi (
E s -DS

Combining the integrals in (34) and Taylor series expanding the resultant

integrand results in the Fokker-Planck equation,

an(E,t) a 1 a2

at FE (Al n(Et)] + 2 ;j2 [A2 n(E,t)] (35)

where,

W

An = N(Z) J (E, - E1 )n K(E,Ef)dEf

-D

and one assumes that the energy-transfer between the ion-pairs and third

bodies is small so that the Taylor series expansion of (34) converges.

This necessarily limits the diffusion model to electron-ion recombination

processes. As an example of the type of results obtained by the energy

space diffusion equation, we show in figure 6 the steady-state distribu-

tion p(A) obtained by Pitaevskii compared with the corresponding results

of the quasi-equilibrium theory. While Pitaevskii's treatment only

becomes accurate in the limit of electron-ion recombination, it's

similarity with the quasi-equilibrium results in figure 6, for the case

of equal mass constitutents, is striking. For a more complete discussion

of energy space diffusional theories of termolecular recombination see

Flannery [26].
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Figure 6: Comparison of quasi-equilibrium distribution ( ) and
Pitaevskii's distribution (---_ for the case of a 1/3 and
charge-transfer coilisions.

IV. Conclusions and General References

In this lecture we have provided a detailed prescription for

handling numerically the coupled partial integro-differential equations

which arise from the Boltzmann equation treatment of ionic recombination.

We have also given a brief summary of some of the approximate methods of

treating ionic recombination. The reason for our detailed treatment of

PIDE's is that there is little in either the physics or mathematics

literature on how to tackle the problem of solving numerically a system

of mult dimensional PIDEs (i.e., systems with more than 1 independent

variable). In this lecture we have tried to fill this gap.

Our main conclusion is that iterative techniques are numerically

the most efficient way of solving the large systems of algebraic equa-

tions which result from PIDE's like (8). While this is not entirely

unexpected, it is the first time techniques like the SSOR have been

applied to problems in ionic recombination. With resolution of the

problem of the ill-conditioning of 4 in (21), a number of long-standing
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problems in chemical physics will be able to be solved. We end this
lectre with alist of general references which we have found useful on

the subject of solving numerically IE's and PIDE's.

- Baker, C. T. H., 1977, The Numerical Treatment of Integral Equations,
Oxford University Press.

- Cullum, J. K., and Willoughby, R. A., 1985, Lanczos Algorithms for
Large Symmetric Eigenvalue Computations. Vol. I Theory. Vol. I,

it
Programs, Birkhauser (Boston).

- Delves, L. M. and Mohammed, J. L., 1985, Computational Methods for
Integral Equations, Cambridge University Press.

- Feldstein, A., and Sopka, J. R., 1974, SIAM J. Numer. Analy. 11,

826-46.

- Golub, G. H., and van Loan, C. F., 1983, Matrix Computations, Johns

Hopkins University Press.

- Hageman, L. A., and Young, D. M., 1981, Applied iterative Methods,

Academic Press.

- Linz, P., 1985, Analytical and Numerical Methods for Volterra Equations

SIAM Press, (Philadelphia).

- Young, D. M., 1971, Iterative Solution of Large Linear Systems,

Academic Press.

- Young, D. M., and Jea, K. C., 1980, Lin. Algebra Appl. 34, 159-94.
- Wilkincq, J., 1965, The Algebraic Eigenvalue Problem, Oxford Univ.

Press.
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